Tits group
In mathematics, the Tits group 2F4(2)′ is a finite simple group of order 17971200 = 211 · 33 · 52 · 13 found by Jacques Tits (1964).
The Ree groups 2F4(22n+1) were constructed by Ree (1961), who showed that they are simple if n ≥ 1. The first member of this series 2F4(2) is not simple. It was studied by Jacques Tits (1964) who showed that its derived subgroup 2F4(2)′ of index 2 was a new simple group. The group 2F4(2) is a group of Lie type and has a BN pair, but the Tits group itself does not have a BN pair. Because the Tits group is not strictly a group of Lie type, it is sometimes regarded as a sporadic group.
Properties
The Schur multiplier of the Tits group is trivial and its outer automorphism group has order 2, with the full automorphism group being the group 2F4(2).
The group 2F4(2) occurs as a maximal subgroup of the Rudvalis group, as the point stabilizer of the rank-3 permutation action on 4060 = 1 + 1755 + 2304 points.
The Tits group is one of the simple N-groups, and was overlooked in John G. Thompson's first announcement of the classification of simple N-groups, as it had not been discovered at the time. It is also one of the thin finite groups.
The Tits group was characterized in various ways by Parrott (1972, 1973) and Stroth (1980).
Maximal subgroups
Wilson (1984) and Tchakerian (1986) independently found the 8 classes of maximal subgroups of the Tits group as follows:
L3(3):2 Two classes, fused by an outer automorphism. These subgroup fix points of rank 4 permutation representations.
2.[28].5.4 Centralizer of an involution.
L2(25)
22.[28].S3
A6.22 (Two classes, fused by an outer automorphism)
52:4A4
Presentation
The Tits group can be defined in terms of generators and relations by
where [a, b] is the commutator. It has an outer automorphism obtained by sending (a, b) to (a, bbabababababbababababa).
References
- Parrott, David (1972), "A characterization of the Tits' simple group", Canadian Journal of Mathematics 24: 672–685, ISSN 0008-414X, MR 0325757
- Parrott, David (1973), "A characterization of the Ree groups 2F4(q)", Journal of Algebra 27: 341–357, doi:10.1016/0021-8693(73)90109-9, ISSN 0021-8693, MR 0347965
- Ree, Rimhak (1961), "A family of simple groups associated with the simple Lie algebra of type (F4)", Bulletin of the American Mathematical Society 67: 115–116, doi:10.1090/S0002-9904-1961-10527-2, ISSN 0002-9904, MR 0125155
- Stroth, Gernot (1980), "A general characterization of the Tits simple group", Journal of Algebra 64 (1): 140–147, doi:10.1016/0021-8693(80)90138-6, ISSN 0021-8693, MR 575787
- Tchakerian, Kerope B. (1986), "The maximal subgroups of the Tits simple group", Pliska Studia Mathematica Bulgarica 8: 85–93, ISSN 0204-9805, MR 866648
- Tits, Jacques (1964), "Algebraic and abstract simple groups", Annals of Mathematics. Second Series 80: 313–329, ISSN 0003-486X, JSTOR 1970394, MR 0164968
- Wilson, Robert A. (1984), "The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits", Proceedings of the London Mathematical Society. Third Series 48 (3): 533–563, doi:10.1112/plms/s3-48.3.533, ISSN 0024-6115, MR 735227