Tetraapeirogonal tiling

From Wikipedia, the free encyclopedia
tetraapeirogonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex figure4..4.
Schläfli symbolr{,4}
rr{,}
Wythoff symbol2 | 4
| 2
Coxeter diagram
Symmetry group[,4], (*42)
[,], (*2)
DualOrder-4-infinite rhombille tiling
PropertiesVertex-transitive edge-transitive

In geometry, the tetrapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{,4}.

Symmetry

The dual to this tiling represents the fundamental domains of *22 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating *2 and *44 symmetry.

Related polyhedra and tiling

Dimensional family of quasiregular polyhedra and tilings: 4.n.4.n
Symmetry
*4n2
[n,4]
Spherical Euclidean Hyperbolic...
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*42
[,4]
Coxeter
Quasiregular
figures
configuration

4.3.4.3

4.4.4.4

4.5.4.5

4.6.4.6

4.7.4.7

4.8.4.8

4..4.
Dual figures
Coxeter
Dual
(rhombic)
figures
configuration

V4.3.4.3

V4.4.4.4

V4.5.4.5

V4.6.4.6

V4.7.4.7

V4.8.4.8

V4..4.
Noncompact hyperbolic uniform tilings in [,4] family
Symmetry: [,4], (*42)
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Alternation duals
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.
Noncompact hyperbolic uniform tilings in [,] family
Symmetry: [,], (*2)
{,} t{,} r{,} 2t{,}=t{,} 2r{,}={,} rr{,} tr{,}
Dual tilings
V V.. V(.)2 V.. V V4..4. V4.4.
Alternations
[1+,,]
(*2)
[+,]
(*)
[,1+,]
(*)
[,+]
(*)
[,,1+]
(*2)
[(,,2+)]
(2*)
[,]+
(2)
h0{,} h0,1{,} h1{,} h1,2{,} h2{,} h0,2{,} s{,}
Alternation duals
V(.) V(3.)3 V(.4)4 V(3.)3 V V(4..4)2 V3.3..3.

See also

References

    • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
    • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 

    External links

    This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.