Tetraapeirogonal tiling
From Wikipedia, the free encyclopedia
tetraapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 4.∞.4.∞ |
Schläfli symbol | r{∞,4} rr{∞,∞} |
Wythoff symbol | 2 | ∞ 4 ∞ | ∞ 2 |
Coxeter diagram | |
Symmetry group | [∞,4], (*∞42) [∞,∞], (*∞∞2) |
Dual | Order-4-infinite rhombille tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the tetrapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}.
Symmetry
The dual to this tiling represents the fundamental domains of *∞2∞2 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating *∞∞2 and *∞44 symmetry.
Related polyhedra and tiling
Symmetry *4n2 [n,4] |
Spherical | Euclidean | Hyperbolic... | ||||
---|---|---|---|---|---|---|---|
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4] |
*∞42 [∞,4] | |
Coxeter | |||||||
Quasiregular figures configuration |
4.3.4.3 |
4.4.4.4 |
4.5.4.5 |
4.6.4.6 |
4.7.4.7 |
4.8.4.8 |
4.∞.4.∞ |
Dual figures | |||||||
Coxeter | |||||||
Dual (rhombic) figures configuration |
V4.3.4.3 |
V4.4.4.4 |
V4.5.4.5 |
V4.6.4.6 |
V4.7.4.7 |
V4.8.4.8 |
V4.∞.4.∞ |
Symmetry: [∞,4], (*∞42) | |||||||
---|---|---|---|---|---|---|---|
{∞,4} | t{∞,4} | r{∞,4} | 2t{∞,4}=t{4,∞} | 2r{∞,4}={4,∞} | rr{∞,4} | tr{∞,4} | |
Dual figures | |||||||
V∞4 | V4.∞.∞ | V(4.∞)2 | V8.8.∞ | V4∞ | V43.∞ | V4.8.∞ | |
Alternations | |||||||
[1+,∞,4] (*44∞) |
[∞+,4] (∞*2) |
[∞,1+,4] (*2∞2∞) |
[∞,4+] (4*∞) |
[∞,4,1+] (*∞∞2) |
[(∞,4,2+)] (2*2∞) |
[∞,4]+ (∞42) | |
h{∞,4} | s{∞,4} | hr{∞,4} | s{4,∞} | h{4,∞} | hrr{∞,4} | s{∞,4} | |
Alternation duals | |||||||
V(∞.4)4 | V3.(3.∞)2 | V(4.∞.4)2 | V3.∞.(3.4)2 | V∞∞ | V∞.44 | V3.3.4.3.∞ |
Symmetry: [∞,∞], (*∞∞2) | ||||||
---|---|---|---|---|---|---|
{∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} |
Dual tilings | ||||||
V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ |
Alternations | ||||||
[1+,∞,∞] (*∞∞2) |
[∞+,∞] (∞*∞) |
[∞,1+,∞] (*∞∞∞∞) |
[∞,∞+] (∞*∞) |
[∞,∞,1+] (*∞∞2) |
[(∞,∞,2+)] (2*∞∞) |
[∞,∞]+ (2∞∞) |
h0{∞,∞} | h0,1{∞,∞} | h1{∞,∞} | h1,2{∞,∞} | h2{∞,∞} | h0,2{∞,∞} | s{∞,∞} |
Alternation duals | ||||||
V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ |
See also
Wikimedia Commons has media related to Uniform tiling 4-i-4-i. |
- List of uniform planar tilings
- Tilings of regular polygons
- Uniform tilings in hyperbolic plane
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.