Terahertz gap
The terahertz gap is an engineering term for a band of frequencies in the terahertz region of the electromagnetic spectrum between radio waves and infrared light for which practical technologies for generating and detecting the radiation do not exist. It is defined as 0.1 to 10 THz (wavelengths of 3mm to 30 µm). Currently, at frequencies within this range, useful power generation and receiver technologies are inefficient and impractical. Mass production of devices in this range and operation at room temperature are mostly unfeasible. Hence, a gap exists between mature microwave technologies in the lower frequencies of the electromagnetic spectrum and the well developed optical technologies in infrared wavelengths and higher frequencies of the electromagnetic spectrum. Research that attempts resolve this issue has been conducted over recent decades .[1][2][3][4][5]
Research
Ongoing investigation has resulted in improved emitters (sources) and detectors, and research in this area has intensified. However, drawbacks remain that include the substantial size of emitters, incompatible frequency ranges, and undesirable operating temperatures, as well as component, device, and detector requirements that are somewhere between solid state electronics and photonic technologies.[6][7][8]
References
- ↑ Gharavi, Sam; Heydari, Babak (2011-09-25). Ultra High-Speed CMOS Circuits : Beyond 100 GHz (1st ed.). New York: Springer Science+Business Media. pp. 1–5 (Introduction) and 100. doi:10.1007/978-1-4614-0305-0. ISBN 9781461403050.
- ↑ Sirtori, Carlo (2002). "Applied physics: Bridge for the terahertz gap" (Free PDF download). Nature 417 (6885): 132–3. Bibcode:2002Natur.417..132S. doi:10.1038/417132b. PMID 12000945.
- ↑ Borak, A. (2005). "Applied physics:: Toward Bridging the Terahertz Gap with Silicon-Based Lasers" (Free PDF download). Science 308 (5722): 638–9. doi:10.1126/science.1109831. PMID 15860612.
- ↑ Karpowicz, Nicholas; Dai, Jianming; Lu, Xiaofei; Chen, Yunqing; Yamaguchi, Masashi; Zhao, Hongwei; Zhang, X.-C.; Zhang, Liangliang et al. (2008). "Coherent heterodyne time-domain spectrometry covering the entire "terahertz gap"". Applied Physics Letters (AbstractBibcode:2008ApPhL..92a1131K. doi:10.1063/1.2828709. ) 92: 011131.
- ↑ Kleiner, R. (2007). "Filling the Terahertz Gap". Science (Abstractdoi:10.1126/science.1151373. PMID 18033873. ) 318 (5854): 1254–5.
- ↑ Ferguson, Bradley; Zhang, Xi-Cheng (2002). "Materials for terahertz science and technology" (Free PDF download). Nature Materials 1 (1): 26–33. Bibcode:2002NatMa...1...26F. doi:10.1038/nmat708. PMID 12618844.
- ↑ Tonouchi, Masayoshi (2007). "Cutting-edge terahertz technology" (Free PDF download). Nature Photonics 1 (2): 97. Bibcode:2007NaPho...1...97T. doi:10.1038/nphoton.2007.3. 200902219783121992.
- ↑ Chen, Hou-Tong; Padilla, Willie J.; Cich, Michael J.; Azad, Abul K.; Averitt, Richard D.; Taylor, Antoinette J. (2009). "A metamaterial solid-state terahertz phase modulator" (Free PDF download). Nature Photonics 3 (3): 148. Bibcode:2009NaPho...3..148C. doi:10.1038/nphoton.2009.3.
Further reading
- Miles, Robert E; Harrison, Paul; Lippens, D (Eds.) (2001). "Terahertz Sources and Systems" (Google Books). Nato Science Series II 27. June 2000. Château de Bonas, France: Proceedings of the NATO Advanced Research Workshop. ISBN 978-0-7923-7096-3. LCCN 2001038180. OCLC 248547276.
External links
- Williams, G. "Filling the THz Gap." CASA Seminar. 2003.
- Cooke, Mike (2007). "Filling the THz Gap with New Applications" 2 (1). Semiconductor Today. pp. 39–43.
- "Understanding THz". Teraphysics. 2013. Retrieved 2013-08-17.
- Janet, Rae-Dupree (November 8, 2011). "New Life for Old Electrons in Biological Imaging, Sensing Technologies". SLAC National Accelerator Laboratory. "...researchers have successfully generated intense pulses of light in a largely untapped part of the electromagnetic spectrum – the so-called terahertz gap. "