Tau-leaping

From Wikipedia, the free encyclopedia

In probability theory, tau-leaping, or τ-leaping, is an approximate method for the simulation of a stochastic system.[1] It is based on the Gillespie algorithm, performing all reactions for an interval of length tau before updating the propensity functions.[2] By updating the rates less often this allows for more efficient simulation and thus the consideration of larger systems.

Cao et al. improved the method to prevent the generation of negative populations.[3][4]

References

  1. Gillespie, D. T. (2001). "Approximate accelerated stochastic simulation of chemically reacting systems". The Journal of Chemical Physics 115 (4): 1716–1711. doi:10.1063/1.1378322. 
  2. Erhard, F.; Friedel, C. C.; Zimmer, R. (2010). "FERN – Stochastic Simulation and Evaluation of Reaction Networks". Systems Biology for Signaling Networks. p. 751. doi:10.1007/978-1-4419-5797-9_30. ISBN 978-1-4419-5796-2. 
  3. Cao, Y.; Gillespie, D. T.; Petzold, L. R. (2005). "Avoiding negative populations in explicit Poisson tau-leaping". The Journal of Chemical Physics 123 (5): 054104. doi:10.1063/1.1992473. PMID 16108628. 
  4. Cao, Y.; Gillespie, D. T.; Petzold, L. R. (2006). "Efficient step size selection for the tau-leaping simulation method". The Journal of Chemical Physics 124 (4): 044109. doi:10.1063/1.2159468. PMID 16460151. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.