Struve function

From Wikipedia, the free encyclopedia

In mathematics, Struve functions {\mathbf  {H}}_{\alpha }(x), are solutions y(x) of the non-homogenous Bessel's differential equation:

x^{2}{\frac  {d^{2}y}{dx^{2}}}+x{\frac  {dy}{dx}}+(x^{2}-\alpha ^{2})y={\frac  {4{(x/2)}^{{\alpha +1}}}{{\sqrt  {\pi }}\Gamma (\alpha +{\frac  {1}{2}})}}

introduced by Hermann Struve (1882). The complex number α is the order of the Struve function, and is often an integer. The modified Struve functions {\mathbf  {L}}_{\alpha }(x) are equal to -ie^{{-i\alpha \pi /2}}{\mathbf  {H}}_{\alpha }(ix).

Definitions

Since this is a non-homogenous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogenous solutions are the Bessel functions, and the particular solution may be chosen as the corresponding Struve function.

Power series expansion

Struve functions, denoted as {\mathbf  {H}}_{\alpha }(x) have the following power series form

{\mathbf  {H}}_{\alpha }(x)=\sum _{{m=0}}^{\infty }{\frac  {(-1)^{m}}{\Gamma (m+{\frac  {3}{2}})\Gamma (m+\alpha +{\frac  {3}{2}})}}{\left({{\frac  {x}{2}}}\right)}^{{2m+\alpha +1}}

where \Gamma (z) is the gamma function.

The modified Struve function, denoted as {\mathbf  {L}}_{{\nu }}(z) have the following power series form

{\mathbf  {L}}_{{\nu }}(z)={\left({{\frac  {z}{2}}}\right)}^{{\nu +1}}\sum _{{k=0}}^{\infty }{\frac  {1}{\Gamma ({\frac  {3}{2}}+k)\Gamma ({\frac  {3}{2}}+k+\nu )}}{\left({{\frac  {z}{2}}}\right)}^{{2k}}

Integral form

Another definition of the Struve function, for values of α satisfying \operatorname {Re}\{\alpha \}>-1/2, is possible using an integral representation:

{\mathbf  {H}}_{\alpha }(x)={\frac  {2{(x/2)}^{{\alpha }}}{{\sqrt  {\pi }}\Gamma (\alpha +{\frac  {1}{2}})}}\int _{{0}}^{{\pi /2}}\sin(x\cos \tau )\sin ^{{2\alpha }}(\tau )d\tau .

Asymptotic forms

For small x, the power series expansion is given above.

For large x, one obtains:

{\mathbf  {H}}_{\alpha }(x)-Y_{\alpha }(x)\rightarrow {\frac  {1}{{\sqrt  {\pi }}\Gamma (\alpha +{\frac  {1}{2}})}}{\left({\frac  {x}{2}}\right)}^{{\alpha -1}}+O\left({(x/2)}^{{\alpha -3}}\right)

where Y_{\alpha }(x) is the Neumann function.

Properties

The Struve functions satisfy the following recurrence relations:

{\mathbf  {H}}_{{\alpha -1}}(x)+{\mathbf  {H}}_{{\alpha +1}}(x)={\frac  {2\alpha }{x}}{\mathbf  {H}}_{\alpha }(x)+{\frac  {{(x/2)}^{\alpha }}{{\sqrt  {\pi }}\Gamma (\alpha +{\frac  {3}{2}})}}
{\mathbf  {H}}_{{\alpha -1}}(x)-{\mathbf  {H}}_{{\alpha +1}}(x)=2{\frac  {{\mathrm  {d}}{\mathbf  {H}}_{\alpha }}{{\mathrm  {d}}x}}-{\frac  {{(x/2)}^{\alpha }}{{\sqrt  {\pi }}\Gamma (\alpha +{\frac  {3}{2}})}}.

Relation to other functions

Struve functions of integer order can be expressed in terms of Weber functions En and vice versa: if n is a non-negative integer then

{\mathbf  {E}}_{n}(z)={\frac  {1}{\pi }}\sum _{{k=0}}^{{[{\frac  {n-1}{2}}]}}{\frac  {\Gamma (k+1/2)(z/2)^{{n-2k-1}}}{\Gamma (n-1/2-k)}}{\mathbf  {H}}_{n}
{\mathbf  {E}}_{{-n}}(z)={\frac  {(-1)^{{n+1}}}{\pi }}\sum _{{k=0}}^{{[{\frac  {n-1}{2}}]}}{\frac  {\Gamma (n-k-1/2)(z/2)^{{-n+2k+1}}}{\Gamma (k+3/2)}}{\mathbf  {H}}_{{-n}}.

Struve functions of order n+1/2 (n an integer) can be expressed in terms of elementary functions. In particular if n is a non-negative integer then

{\mathbf  {H}}_{{-n-1/2}}(z)=(-1)^{n}J_{{n+1/2}}(z)

where the right hand side is a spherical Bessel function.

Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function 1F2 (which is not the Gauss hypergeometric function 2F1) :

{\mathbf  {H}}_{{\alpha }}(z)={\frac  {(z/2)^{{\alpha +1/2}}}{{\sqrt  {2\pi }}\Gamma (\alpha +3/2)}}{}_{1}F_{2}(1,3/2,\alpha +3/2,-z^{2}/4).

References

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.