Structure constants

From Wikipedia, the free encyclopedia

In group theory, a discipline within mathematics, the structure constants of a Lie group determine the commutation relations between its generators in the associated Lie algebra.

Definition

Given a set of generators T^{i}, the structure constants f^{{abc}}express the Lie brackets of pairs of generators as linear combinations of generators from the set, i.e.

[T^{a},T^{b}]=f^{{abc}}T^{c}.

The structure constants determine the Lie brackets of elements of the Lie algebra, and consequently nearly completely determine the group structure of the Lie group. For small elements X,Y of the Lie algebra, the structure of the Lie group near the identity element is given by \exp(X)\exp(Y)\approx \exp(X+Y+{\tfrac  {1}{2}}[X,Y]). This expression is made exact by the Baker–Campbell–Hausdorff formula.


Examples

SU(2)

The generators of the group SU(2) satisfy the commutation relations (where \epsilon ^{{abc}} is the Levi-Civita symbol):

[J^{a},J^{b}]=i\epsilon ^{{abc}}J^{c}\,

In this case, f^{{abc}}=i\epsilon ^{{abc}}, and the distinction between upper and lower indexes doesn't matter (the metric is the Kronecker delta \delta _{{ab}}).

SU(3)

A less trivial example is given by SU(3):

Its generators, T, in the defining representation, are:

T^{a}={\frac  {\lambda ^{a}}{2}}.\,

where \lambda \,, the Gell-Mann matrices, are the SU(3) analog of the Pauli matrices for SU(2):

\lambda ^{1}={\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}} \lambda ^{2}={\begin{pmatrix}0&-i&0\\i&0&0\\0&0&0\end{pmatrix}} \lambda ^{3}={\begin{pmatrix}1&0&0\\0&-1&0\\0&0&0\end{pmatrix}}
\lambda ^{4}={\begin{pmatrix}0&0&1\\0&0&0\\1&0&0\end{pmatrix}} \lambda ^{5}={\begin{pmatrix}0&0&-i\\0&0&0\\i&0&0\end{pmatrix}} \lambda ^{6}={\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}}
\lambda ^{7}={\begin{pmatrix}0&0&0\\0&0&-i\\0&i&0\end{pmatrix}} \lambda ^{8}={\frac  {1}{{\sqrt  {3}}}}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&-2\end{pmatrix}}.

These obey the relations

\left[T^{a},T^{b}\right]=if^{{abc}}T^{c}\,
\{T^{a},T^{b}\}={\frac  {1}{3}}\delta ^{{ab}}+d^{{abc}}T^{c}.\,

The structure constants are given by:

f^{{123}}=1\,
f^{{147}}=-f^{{156}}=f^{{246}}=f^{{257}}=f^{{345}}=-f^{{367}}={\frac  {1}{2}}\,
f^{{458}}=f^{{678}}={\frac  {{\sqrt  {3}}}{2}},\,

and all other f^{{abc}} not related to these by permutation are zero.

The d take the values:

d^{{118}}=d^{{228}}=d^{{338}}=-d^{{888}}={\frac  {1}{{\sqrt  {3}}}}\,
d^{{448}}=d^{{558}}=d^{{668}}=d^{{778}}=-{\frac  {1}{2{\sqrt  {3}}}}\,
d^{{146}}=d^{{157}}=-d^{{247}}=d^{{256}}=d^{{344}}=d^{{355}}=-d^{{366}}=-d^{{377}}={\frac  {1}{2}}.\,

Hall polynomials

The Hall polynomials are the structure constants of the Hall algebra.

Applications

G_{{\mu \nu }}^{a}=\partial _{\mu }{\mathcal  {A}}_{\nu }^{a}-\partial _{\nu }{\mathcal  {A}}_{\mu }^{a}+gf^{{abc}}{\mathcal  {A}}_{\mu }^{b}{\mathcal  {A}}_{\nu }^{c}\,,
where fabc are the structure constants of SU(3). Note that the rules to move-up or pull-down the a, b, or c indexes are trivial, (+,... +), so that fabc = fabc = fa
bc
whereas for the μ or ν indexes one has the non-trivial relativistic rules, corresponding e.g. to the metric signature (+ − − −).

References

  1. Raghunathan, Chapter II, Discrete Subgroups of Lie Groups, M. S. Raghunathan
  2. M. Eidemüller, H.G. Dosch, M. Jamin (1999). "The field strength correlator from QCD sum rules". Nucl.Phys.Proc.Suppl.86:421-425,2000 (Heidelberg, Germany). arXiv:hep-ph/9908318. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.