Stolz–Cesàro theorem

From Wikipedia, the free encyclopedia

In mathematics, the Stolz–Cesàro theorem, named after mathematicians Otto Stolz and Ernesto Cesàro, is a criterion for proving the convergence of a sequence.

Let (a_{n})_{{n\geq 1}} and (b_{n})_{{n\geq 1}} be two sequences of real numbers. Assume that b_{n} is strictly increasing and approaches infinity and the following limit exists:

\lim _{{n\to \infty }}{\frac  {a_{{n+1}}-a_{n}}{b_{{n+1}}-b_{n}}}=\ell .\

Then, the limit

\lim _{{n\to \infty }}{\frac  {a_{n}}{b_{n}}}\

also exists and it is equal to .

The general form of the Stolz–Cesàro theorem is the following (see http://www.imomath.com/index.php?options=686): If (a_{n})_{{n\geq 1}} and (b_{n})_{{n\geq 1}} are two sequences such that b_{n} is monotone and unbounded, then:

\liminf _{{n\to \infty }}{\frac  {a_{{n+1}}-a_{n}}{b_{{n+1}}-b_{n}}}\leq \liminf _{{n\to \infty }}{\frac  {a_{n}}{b_{n}}}\leq \limsup _{{n\to \infty }}{\frac  {a_{n}}{b_{n}}}\leq \limsup _{{n\to \infty }}{\frac  {a_{{n+1}}-a_{n}}{b_{{n+1}}-b_{n}}}.


The Stolz–Cesàro theorem can be viewed as a generalization of the Cesàro mean, but also as a l'Hôpital's rule for sequences. The ∞/∞ case is stated and proved on pages 173—175 of Stolz's 1885 book S and also on page 54 of Cesàro's 1888 article C. It appears as Problem 70 in Pólya and Szegö.

References

  • Marian Mureşan: A Concrete Approach to Classical Analysis. Springer 2008, ISBN 978-0-387-78932-3, p. 85 (restricted online copy, p. 85, at Google Books)
  • Stolz, O. Vorlesungen über allgemeine Arithmetik: nach den Neueren Ansichten, Teubners, Leipzig, 1885, pp. 173–175. (online copy at Internet Archive)
  • Cesaro, E., Sur la convergence des séries, Nouvelles annales de mathématiques Series 3, 7 (1888), 49—59.
  • Pólya, G. and Szegö, G. Aufgaben und Lehrsätze aus der Analysis, v. 1, Berlin, J. Springer 1925.

External links

This article incorporates material from Stolz-Cesaro theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.