Stieltjes constants

From Wikipedia, the free encyclopedia

In mathematics, the Stieltjes constants are the numbers \gamma _{k} that occur in the Laurent series expansion of the Riemann zeta function:

\zeta (s)={\frac  {1}{s-1}}+\sum _{{n=0}}^{\infty }{\frac  {(-1)^{n}}{n!}}\gamma _{n}\;(s-1)^{n}.

The zero'th constant \gamma _{0}=\gamma =0.577\dots is known as the Euler–Mascheroni constant.

Representations

The Stieltjes constants are given by the limit

\gamma _{n}=\lim _{{m\rightarrow \infty }}{\left(\left(\sum _{{k=1}}^{m}{\frac  {(\ln k)^{n}}{k}}\right)-{\frac  {(\ln m)^{{n+1}}}{n+1}}\right)}.

(In the case n = 0, the first summand requires evaluation of 00, which is taken to be 1.)

Cauchy's differentiation formula leads to the integral representation

\gamma _{n}={\frac  {(-1)^{n}n!}{2\pi }}\int _{0}^{{2\pi }}e^{{-nix}}\zeta \left(e^{{ix}}+1\right)dx.

Several representations in terms of integrals and infinite series are given in the papers of Coffey.

Numerical values

The first few values are:

n approximate value of γn OEIS
0 +0.5772156649015328606065120900824024310421593359 A001620
1 0.0728158454836767248605863758749013191377363383 A082633
2 0.0096903631928723184845303860352125293590658061 A086279
3 +0.0020538344203033458661600465427533842857158044 A086280
4 +0.0023253700654673000574681701775260680009044694 A086281
5 +0.0007933238173010627017533348774444448307315394 A086282
6 0.0002387693454301996098724218419080042777837151 A183141
7 0.0005272895670577510460740975054788582819962534 A183167
8 0.0003521233538030395096020521650012087417291805 A183206
9 0.0000343947744180880481779146237982273906207895 A184853
10 +0.0002053328149090647946837222892370653029598537 A184854
100 4.2534015717080269623144385197278358247028931053 × 1017
1000 1.5709538442047449345494023425120825242380299554 × 10486
10000 2.2104970567221060862971082857536501900234397174 × 106883
100000 +1.9919273063125410956582272431568589205211659777 × 1083432

For large n, the Stieltjes constants grow rapidly in absolute value, and change signs in a complex pattern.

Numerical values of the Stieltjes constants up to n = 100000, accurate to over 10000 digits each, have been computed by Johansson. The numerical values can be retrieved from the LMFDB .

Asymptotic growth

The Stieltjes constants satisfy the bound

|\gamma _{n}|<{\frac  {4(n-1)!}{{\pi }^{n},}}

as proved by Berndt. A much tighter bound, valid for n\geq 10, is given by Matsuoka:

|\gamma _{n}|<0.0001e^{{n\log \log n}}

Knessl and Coffey give a formula that approximates the Stieltjes constants accurately for large n. If v is the unique solution of

2\pi \exp(v\tan v)=n{\frac  {\cos(v)}{v}}

with 0<v<\pi /2, and if u=v\tan v, then

\gamma _{n}\sim {\frac  {B}{{\sqrt  {n}}}}e^{{nA}}\cos(an+b)

where

A={\frac  {1}{2}}\log(u^{2}+v^{2})-{\frac  {u}{u^{2}+v^{2}}}
B={\frac  {2{\sqrt  {2\pi }}{\sqrt  {u^{2}+v^{2}}}}{[(u+1)^{2}+v^{2}]^{{1/4}}}}
a=\tan ^{{-1}}\left({\frac  {v}{u}}\right)+{\frac  {v}{u^{2}+v^{2}}}
b=\tan ^{{-1}}\left({\frac  {v}{u}}\right)-{\frac  {1}{2}}\left({\frac  {v}{u+1}}\right).

Up to n=10^{5}, the Knessl-Coffey approximation correctly predicts the sign of \gamma _{n} with the single exception of n=137.

Generalized Stieltjes constants

More generally, one can define Stieltjes constants \gamma _{k}(a) that occur in the Laurent series expansion of the Hurwitz zeta function:

\zeta (s,a)={\frac  {1}{s-1}}+\sum _{{n=0}}^{\infty }{\frac  {(-1)^{n}}{n!}}\gamma _{n}(a)\;(s-1)^{n}.

Here a is a complex number with Re(a)>0. Since the Hurwitz zeta function is a generalization of the Riemann zeta function, we have

\gamma _{n}(1)=\gamma _{n}.\;

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.