Sodium diethyldithiocarbamate

From Wikipedia, the free encyclopedia
Sodium diethyldithiocarbamate
Identifiers
CAS number 148-18-5 YesY
PubChem 533728
ChemSpider 8642 YesY
UNII A5304YEB5E YesY
ChEMBL CHEMBL107217 YesY
Jmol-3D images {{#if:[Na+].[S-]C(=S)N(CC)CC|Image 1
Properties
Molecular formula C5H10NS2Na
Molar mass 171.259 g/mol (anhydrous)
Appearance White, slightly brown, or slightly pink crystalline solid
Density 1.1 g/cm3
Melting point 95 °C; 203 °F; 368 K
Solubility in water Soluble
Solubility soluble in alcohol, acetone
insoluble in ether, benzene
Hazards
Main hazards Harmful
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

Sodium diethyldithiocarbamate is the organosulfur compound with the formula NaS2CN(C2H5)2.

Preparation

This salt is obtained by treating carbon disulfide with diethylamine in the presence of sodium hydroxide:

CS2 + HN(C2H5)2 + NaOH → NaS2CN(C2H5)2 + H2O

Other dithiocarbamates can be prepared similarly from secondary amines and carbon disulfide. They are used as chelating agents for transition metal ions and as precursors to herbicides and vulcanization reagents.

Oxidation to thiuram disulfide

Oxidation of sodium diethyldithiocarbamate gives the disulfide, also called a thiuram disulfide (Et = ethyl):

2 NaS2CNEt2 + I2 Et2NC(S)S-SC(S)NEt2 + 2 NaI

This disulfide is marketed as an anti-alcoholism drug under the labels Antabuse and Disulfiram. Chlorination of the above-mentioned thiuram disulfide affords the thiocarbamoyl chloride.[1]

Ligand bonding

The diethyldithiocarbamate ion chelates to many "softer" metals via the two sulfur atoms. Other more complicated bonding modes are known including binding as unidentate ligand and a bridging ligand using one or both sulfur atoms.[2]

Spin trapping of nitric oxide radicals

Complexes of Dithiocarbamates with iron provide one of the very few methods to study the formation of nitric oxide (NO) radicals in biological materials. Although the lifetime of NO in tissues is too short to allow detection of this radical itself, NO readily binds to iron-dithiocarbamate complexes. The resulting mono-nitrosyl-iron complex (MNIC) is stable, and may be detected with Electron Paramagnetic Resonance (EPR) spectroscopy.[3][4][5]

In cancer

The effect of diethyldithiocarbamate of chelating zinc inhibits metalloproteinases, which in turn prevents the degradation of extracellular matrix, which is an initial step in cancer metastasis and angiogenesis. [6]

Antioxidant

Diethyldithiocarbamate inhibits superoxide dismutase, which can both have antioxidant and oxidant effects on cells, depending on the time of administration.[6]

In metabolism

Diethyldithiocarbamate has been described to interfere with glucocorticoid metabolism, by inhibiting the activity of the enzyme 11beta-hydroxysteroid dehydrogenase type 2, which converts cortisol to cortisone.[7]

References

  1. Goshorn, R. H.; Levis, Jr., W. W. ;Jaul, E.; Ritter, E. J. (1963), "Diethylthiocarbamyl Chloride", Org. Synth. ; Coll. Vol. 4: 307 
  2. Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5 
  3. Henry Y.; Guissani A.; Ducastel B. (eds); "Nitric oxide research from chemistry to biology: EPR spectroscopy of nitrosylated compounds." Landes, Austin 1997.
  4. Vanin A.F.; Huisman A.; van Faassen E.E.; "Iron dithiocarbamates as spin trap for nitric oxide: Pitfalls and successes." Methods in Enzymology vol 359 (2002) 27 - 42.
  5. van Faassen E.E.; Vanin A.F. (eds); "Radicals for life: The various forms of nitric oxide." Elsevier, Amsterdam 2007.
  6. 6.0 6.1 diethyldithiocarbamate National Cancer Institute - Drug Dictionary
  7. Atanasov AG, Tam S, Röcken JM, Baker ME,Odermatt A. Inhibition of 11beta-hydroxysteroid dehydrogenase type 2 bydithiocarbamates. Biochem Biophys ResCommun. 2003 Aug 22;308(2):257-62. PubMedPMID: 12901862. http://www.ncbi.nlm.nih.gov/pubmed/12901862

Further reading

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.