Snub hexahexagonal tiling
From Wikipedia, the free encyclopedia
Snub hexahexagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 3.3.6.3.6 |
Schläfli symbol | s{6,4} sr{6,6} |
Wythoff symbol | | 6 6 2 |
Coxeter diagram | |
Symmetry group | [6,6]+, (662) [6+,4], (6*2) |
Dual | Order-6-6 floret hexagonal tiling |
Properties | Vertex-transitive |
In geometry, the snub hexahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,6}.
Symmetry
A higher symmetry coloring can be constructed from [6,4] symmetry as s{6,4}, . In this construction there is only one color of hexagon.
Related polyhedra and tiling
Symmetry: [6,6], (*662) | ||||||
---|---|---|---|---|---|---|
{6,6} | t{6,6} |
r{6,6} | t{6,6} | {6,6} | rr{6,6} | tr{6,6} |
Uniform duals | ||||||
V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 |
Alternations | ||||||
[1+,6,6] (*663) |
[6+,6] (6*3) |
[6,1+,6] (*3232) |
[6,6+] (6*3) |
[6,6,1+] (*663) |
[(6,6,2+)] (2*33) |
[6,6]+ (662) |
h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} |
Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | ||||||
= = |
= |
= = = |
= |
= = |
= |
|
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} |
Uniform duals | ||||||
---|---|---|---|---|---|---|
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 |
Alternations | ||||||
[1+,6,4] (*443) |
[6+,4] (6*2) |
[6,1+,4] (*3222) |
[6,4+] (4*3) |
[6,4,1+] (*662) |
[(6,4,2+)] (2*32) |
[6,4]+ (642) |
= |
= |
= |
= |
= |
= |
|
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-3-6-3-6. |
- Square tiling
- Tilings of regular polygons
- List of uniform planar tilings
- List of regular polytopes
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.