Snub 24-cell honeycomb
Snub 24-cell honeycomb | |
---|---|
(No image) | |
Type | Uniform 4-honeycomb |
Schläfli symbols | s{3,4,3,3} sr{3,3,4,3} s2r{4,3,3,4} s2r{4,3,31,1} s{31,1,1,1} |
Coxeter-Dynkin diagrams |
|
4-face type | snub 24-cell 16-cell 5-cell |
Cell type | {3,3} {3,5} |
Face type | triangle {3} |
Vertex figure | Irregular decachoron |
Symmetry groups | [3+,4,3,3], ½ [3,4,(3,3)+], ½ [4,(3,3)+,4], ½ [4,(3,31,1)+], ½ [31,1,1,1]+, ½ |
Properties | Vertex transitive, nonWythoffian |
In four-dimensional Euclidean geometry, the snub 24-cell honeycomb, or snub icositetrachoric honeycomb is a uniform space-filling tessellation (or honeycomb) by snub 24-cells, 16-cells, and 5-cells. It was discovered by Thorold Gosset with his 1900 paper of semiregular polytopes. It is not semiregular by Gosset's definition of regular facets, but all of its cells (ridges) are regular, either tetrahedra or icosahedra.
It can be seen as an alternation of a truncated 24-cell honeycomb, and can be represented by Schläfli symbol s{3,4,3,3}, s{31,1,1,1}, and 3 other snub constructions.
It is defined by an irregular decachoron vertex figure (10-celled 4-polytope), faceted by four snub 24-cells, one 16-cell, and five 5-cells. The vertex figure can be seen topologically as a modified tetrahedral prism, where one of the tetrahedra is subdivided at mid-edges into a central octahedron and four corner tetrahedra. Then the four side-facets of the prism, the triangular prisms become tridiminished icosahedra.
Symmetry constructions
There are five different symmetry constructions of this tessellation. Each symmetry can be represented by different arrangements of colored snub 24-cell, 16-cell, and 5-cell facets. In all cases, four snub 24-cells, five 5-cells, and one 16-cell meet at each vertex, but the vertex figures have different symmetry generators.
Coxeter group | Extended symmetry group Coxeter notation |
Coxeter diagram Schläfli symbol |
Facets (on vertex figure) | ||
---|---|---|---|---|---|
Snub 24-cell (4) |
16-cell (1) |
5-cell (5) | |||
= [3,4,3,3] | [3+,4,3,3] | s{3,4,3,3} |
4: | ||
= [3,4,3,3] | [3,4,(3,3)+] | sr{3,3,4,3} |
3: 1: |
||
= [4,3,3,4] | [[4,(3,3)+,4]] | s2r{4,3,3,4} |
2,2: | ||
= [31,1,3,4] | <[(31,1,3)+,4]> = [4,(3,3)+,4] | s2r{4,3,31,1} |
1,1: 2: |
||
= [31,1,1,1] | [(3,3)[31,1,1,1]+] = [3,3,4,3+] [3[3,31,1,1]+] = [3,4,(3,3)+] |
s{31,1,1,1} |
1,1,1,1: |
Related honeycombs
The [3,4,3,3], , Coxeter group generates 31 permutations of uniform tessellations, 28 are unique in this family and ten are shared in the [4,3,3,4] and [4,3,31,1] families. The alternation (13) is also repeated in other families.
Extended symmetry |
Extended diagram |
Order | Honeycombs |
---|---|---|---|
[3,3,4,3] | ×1 | ||
[3,4,3,3] | ×1 |
2,
4,
7,
13, | |
[(3,3)[3,3,4,3*]] =[(3,3)[31,1,1,1]] =[3,4,3,3] |
= = | ×4 |
The [4,3,3,4], , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.
Extended symmetry |
Extended diagram |
Order | Honeycombs |
---|---|---|---|
[4,3,3,4]: | ×1 | ||
[[4,3,3,4]] | ×2 | (1), (2), (13), 18 (6), 19, 20 | |
[(3,3)[1+,4,3,3,4,1+]] = [(3,3)[31,1,1,1]] = [3,4,3,3] |
= = |
×6 |
The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.
Extended symmetry |
Extended diagram |
Order | Honeycombs |
---|---|---|---|
[4,3,31,1]: | ×1 | ||
<[4,3,31,1]>: =[4,3,3,4] |
= |
×2 | |
[3[1+,4,3,31,1]] = [3[3,31,1,1]] = [3,3,4,3] |
= = |
×3 | |
[(3,3)[1+,4,3,31,1]] = [(3,3)[31,1,1,1]] = [3,4,3,3] |
= = |
×12 |
This honeycomb is one of ten uniform honeycombs constructed by the Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1]. The ten permutations are listed with its highest extended symmetry relation:
Extended symmetry |
Extended diagram |
Order | Honeycombs |
---|---|---|---|
[31,1,1,1] | ×1 | (none) | |
<[31,1,1,1]> = [31,1,3,4] |
= |
×2 | (none) |
<<[1,131,1]>> = [4,3,3,4] |
= |
×4 | 1, 2 |
[3[3,31,1,1]] = [3,4,3,3] |
= |
×6 | 3, 4, 5, 6 |
[<<[1,131,1]>>] = [[4,3,3,4]] |
= |
×8 | 7, 8, 9, 10 |
[(3,3)[31,1,1,1]] = [3,3,4,3] |
= |
×24 |
See also
Regular and uniform honeycombs in 4-space:
- Tesseractic honeycomb
- 16-cell honeycomb
- 24-cell honeycomb
- Truncated 24-cell honeycomb
- 5-cell honeycomb
- Truncated 5-cell honeycomb
- Omnitruncated 5-cell honeycomb
References
- T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 133
- Richard Klitzing, 4D, Euclidean tesselations, o4s3s3s4o, s3s3s *b3s4o, s3s3s *b3s *b3s, o3o3o4s3s, s3s3s4o3o - sadit - O133
Fundamental convex regular and uniform honeycombs in dimensions 2–11 | |||||
---|---|---|---|---|---|
Family | / / | ||||
Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
Uniform 5-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
Uniform 6-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
Uniform 7-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
Uniform 8-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
Uniform 9-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
Uniform n-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |