Small stellated dodecahedron

From Wikipedia, the free encyclopedia
Small stellated dodecahedron
TypeKepler-Poinsot polyhedron
Stellation coredodecahedron
ElementsF = 12, E = 30
V = 12 (χ = -6)
Faces by sides12{5/2}
Schläfli symbol{5/2,5}
Wythoff symbol5 | 25/2
Coxeter-Dynkin
Symmetry groupIh, H3, [5,3], (*532)
ReferencesU34, C43, W20
PropertiesRegular nonconvex

(5/2)5
(Vertex figure)

Great dodecahedron
(dual polyhedron)

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {5/2,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

It shares the same vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement as the great icosahedron.

It is considered the first of three stellations of the dodecahedron.

If the pentagrammic faces are considered as 5 triangular faces, it shares the same surface topology as the pentakis dodecahedron, but with much taller isosceles triangle faces.

Images

Transparent model Handmade models

(See also: animated)
Spherical tiling Stellation net

This polyhedron also represents a spherical tiling with a density of 3. (One spherical pentagram face, outlined in blue, filled in yellow)

It can also be constructed as the first of three stellations of the dodecahedron, and referenced as Wenninger model [W20].

Small stellated dodecahedra can be constructed out of paper or cardstock by connecting together 12 five-sided isosceles pyramids in the same manner as the pentagons in a regular dodecahedron. With an opaque material, this visually represents the exterior portion of each pentagrammic face.

In art

Floor mosaic by Paolo Uccello, 1430

Related polyhedra

Its convex hull is the regular convex icosahedron. It also shares its edges with the great icosahedron.

This polyhedron is the truncation of the great dodecahedron:

The truncated small stellated dodecahedron looks like a dodecahedron on the surface, but it has 24 faces: 12 pentagons from the truncated vertices and 12 overlapping (as truncated pentagrams).

Name Small stellated dodecahedron Truncated small stellated dodecahedron Dodecadodecahedron Truncated
great
dodecahedron
Great
dodecahedron
Coxeter-Dynkin
diagram
Picture

References

  • Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9. 
  • Coxeter, H. S. M. (1938). The Fifty-Nine Icosahedra. Springer-Verlag, New York, Berlin, Heidelberg. ISBN 0-387-90770-X. 

See also

External links

Stellations of the dodecahedron
Platonic solid Kepler-Poinsot solids
Dodecahedron Small stellated dodecahedron Great dodecahedron Great stellated dodecahedron
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.