Siloxane

From Wikipedia, the free encyclopedia

A siloxane is a functional group in organosilicon chemistry with the SiOSi linkage. The parent siloxanes include the oligomeric and polymeric hydrides with the formulae H(OSiH2)nOH and (OSiH2)n.[1] Siloxanes also include branched compounds, the defining feature being that each pair of silicon centres is separated by one oxygen atom. The siloxane functional group forms the backbone of silicones, the premier example of which is polydimethylsiloxane.[2]

Structure

Siloxanes generally adopt structures expected for linked tetrahedral ("sp3-like") centers. The SiO bond is 1.64 Å (vs SiC distance of 1.92 Å) and the SiOSi angle is rather open at 142.5°.[3] By way of contrast, the CO distance in a typical dialkyl ether is much shorter at 1.414(2) Å with a more acute COC angle of 111°.[4] It can be appreciated that the siloxanes would have low barriers for rotation about the SiO bonds as a consequence of low steric hindrance. This geometric consideration is the basis of the useful properties of some siloxane-containing materials, such as their low glass transition temperatures.

Synthesis of siloxanes

The main route to siloxane functional group is by condensation of two silanols:

2 R3SiOH → R3SiOSiR3 + H2O

Usually the silanols are generated in situ by hydrolysis of silyl chlorides. With a disilanol, R2Si(OH)2 (derived from double hydrolysis of a silyldichloride), the condensation can afford linear products terminated with silanol groups:

n R2Si(OH)2 → H(R2SiO)nOH + n1 H2O

Alternatively the disilanol can afford cyclic products

n R2Si(OH)2 → (R2SiO)n + n H2O

Starting from trisilanols, cages are possible, such as the species with the formula (RSi)nO3n/2 with cubic (n = 8) and hexagonal prismatic (n = 12). (RSi)8O12 structures. The cubic cages is an expanded analogues of the hydrocarbon cubane, with silicon centers at the corners of a cube oxygen centres spanning each of the twelve edges.[5]

Reactions

Oxidation of organosilicon compounds, including siloxanes, gives silicon dioxide. This conversion is illustrated by the combustion of hexamethylcyclotrisiloxane:

((CH3)2SiO)3 + 12 O2 → 3 SiO2 + 6 CO2 + 9 H2O

Strong base degrades siloxane group, often affording siloxide salts:

((CH3)3Si)2O + 2 NaOH → 2 (CH3)3SiONa + H2O

This reaction proceeds by production of silanols. Similar reactions are used industrially to convert cyclic siloxanes to linear polymers.[2]

Nomenclature

Decamethylcyclopentasiloxane, or D5, a cyclic siloxane.

The word siloxane is derived from the words silicon, oxygen, and alkane. In some cases, siloxane materials are composed of several different types of siloxide groups; these are labeled according the number of Si-O bonds. M-units: (CH3)3SiO0.5, D-units: (CH3)2SiO, T-units: (CH3)SiO1.5

Cyclic siloxanes Linear siloxanes
D3: hexamethylcyclotrisiloxane MM: hexamethyldisiloxane
D4: octamethylcyclotetrasiloxane MDM: octamethyltrisiloxane
D5: decamethylcyclopentasiloxane MD2M: decamethyltetrasiloxane
D6: dodecamethylcyclohexasiloxane MDnM: polydimethylsiloxane

References

  1. Siloxanes, IUPAC Gold Book
  2. 2.0 2.1 Röshe, L.; John, P.; Reitmeier, R. “Organic Silicon Compounds” Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley and Sons: San Francisco, 2003. doi:10.1002/14356007.a24_021.
  3. H. Steinfink, B. Post and I. Fankuchen "The crystal structure of octamethyl cyclotetrasiloxane" Acta Cryst. 1955, vol. 8, 420-424. doi:10.1107/S0365110X55001333
  4. "Dichlorosilane–dimethyl ether aggregation: a new motif in halosilane adduct formation" K. Vojinović, U. Losehand, N. W. Mitzel Dalton Trans., 2004, 2578-2581. doi:10.1039/B405684A
  5. S. D. Kinrade, J. C. H. Donovan, A. S. Schach and C. T. G. Knight (2002), Two substituted cubic octameric silicate cages in aqueous solution. J. Chem. Soc., Dalton Trans., 1250 - 1252. doi:10.1039/b107758a

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.