Siegel upper half-space
From Wikipedia, the free encyclopedia
In mathematics, the Siegel upper half-space of degree g (or genus g) (also called the Siegel upper half-plane) is the set of g × g symmetric matrices over the complex numbers whose imaginary part is positive definite. It was introduced by Siegel (1939).
In the case g = 1, the Siegel upper half-space is the well-known upper half-plane.
See also
- Siegel domain, a generalization of the Siegel upper half space
References
- van der Geer, Gerard (2008), "Siegel modular forms and their applications", in Ranestad, Kristian, The 1-2-3 of modular forms, Universitext, Berlin: Springer-Verlag, pp. 181–245, doi:10.1007/978-3-540-74119-0, ISBN 978-3-540-74117-6, MR 2409679
- Siegel, Carl Ludwig (1939), "Einführung in die Theorie der Modulfunktionen n-ten Grades", Mathematische Annalen 116: 617–657, doi:10.1007/BF01597381, ISSN 0025-5831, MR 0001251
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.