Semi-infinite programming

From Wikipedia, the free encyclopedia

In optimization theory, semi-infinite programming (SIP) is an optimization problem with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints. In the former case the constraints are typically parameterized.[1]

Mathematical formulation of the problem

The problem can be stated simply as:

\min _{{x\in X}}\;\;f(x)
{\text{subject to: }}\
g(x,y)\leq 0,\;\;\forall y\in Y

where

f:R^{n}\to R
g:R^{n}\times R^{m}\to R
X\subseteq R^{n}
Y\subseteq R^{m}.

SIP can be seen as a special case of bilevel programs (multilevel programming) in which the lower-level variables do not participate in the objective function.

Methods for solving the problem

In the meantime, see external links below for a complete tutorial.

Examples

In the meantime, see external links below for a complete tutorial.

See also

References

    • Bonnans, J. Frédéric; Shapiro, Alexander (2000). "5.4 and 7.4.4 Semi-infinite programming". Perturbation analysis of optimization problems. Springer Series in Operations Research. New York: Springer-Verlag. pp. 496–526 and 581. ISBN 0-387-98705-3. MR 1756264. 
    • M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, 1998.
    • Hettich, R.; Kortanek, K. O. (1993). "Semi-infinite programming: Theory, methods, and applications". SIAM Review 35 (3). pp. 380–429. doi:10.1137/1035089. JSTOR 2132425. MR 1234637. 
  • Edward J. Anderson and Peter Nash, Linear Programming in Infinite-Dimensional Spaces, Wiley, 1987.
  • Bonnans, J. Frédéric; Shapiro, Alexander (2000). "5.4 and 7.4.4 Semi-infinite programming". Perturbation analysis of optimization problems. Springer Series in Operations Research. New York: Springer-Verlag. pp. 496–526 and 581. ISBN 0-387-98705-3. MR 1756264. 
  • M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization, Wiley, 1998.
  • Hettich, R.; Kortanek, K. O. (1993). "Semi-infinite programming: Theory, methods, and applications". SIAM Review 35 (3). pp. 380–429. doi:10.1137/1035089. JSTOR 2132425. MR 1234637. 
  • David Luenberger (1997). Optimization by Vector Space Methods. John Wiley & Sons. ISBN 0-471-18117-X.
  • Rembert Reemtsen and Jan-J. Rückmann (Editors), Semi-Infinite Programming (Nonconvex Optimization and Its Applications). Springer, 1998, ISBN 0-7923-5054-5, 1998

External links


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.