Semantic role labeling

From Wikipedia, the free encyclopedia

Semantic role labeling, sometimes also called shallow semantic parsing, is a task in natural language processing consisting of the detection of the semantic arguments associated with the predicate or verb of a sentence and their classification into their specific roles. For example, given a sentence like "Mary sold the book to John", the task would be to recognize the verb "to sell" as representing the predicate, "Mary" as representing the seller (agent), "the book" as representing the goods (theme), and "John" as representing the recipient. This is an important step towards making sense of the meaning of a sentence. A semantic representation of this sort is at a higher-level of abstraction than a syntax tree. For instance, the sentence "The book was sold by Mary to John" has a different syntactic form, but the same semantic roles.

History

The FrameNet project produced the first major computational lexicon that systematically described many predicates and their corresponding roles. Daniel Gildea (University of California, Berkeley / International Computer Science Institute) and Daniel Jurafsky (University of Colorado, Boulder) developed the first automatic semantic role labeling system based on FrameNet. The PropBank corpus added manually created semantic role annotations to the Penn TreeBank corpus of Wall Street Journal texts. Many automatic semantic role labeling systems have used PropBank as a training dataset to learn how to annotate new sentences automatically.

See also

References

  • Automatic Labeling of Semantic Roles, Daniel Gildea and Daniel Jurafsky. In Proceedings of the 38th Annual Conference of the Association for Computational Linguistics (ACL-00), pp. 512–520, Hong Kong, October 2000.

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.