Scattered order

From Wikipedia, the free encyclopedia

In mathematical order theory, a scattered order is a linear order that contains no densely ordered subset with more than one element (Harzheim 2005:193ff.)

A characterization due to Hausdorff states that the class of all scattered orders is the smallest class of linear orders which contains the singleton orders and is closed under well-ordered and reverse well-ordered sums.

Laver's theorem (generalizing Fraïssé's conjecture) states that the embedding relation on the class of countable unions of scattered orders is a well-quasi-order (Harzheim 2005:265).

The order topology of a scattered order is scattered. The converse implication does not hold, as witnessed by the lexicographic order on {\mathbb  Q}\times {\mathbb  Z}.

References

  • Egbert Harzheim (2005). Ordered Sets. Springer. ISBN 0-387-24219-8. 
  • Laver, Richard (1971). "On Fraïssé's order type conjecture". Annals of Mathematics 93 (1): 89–111. doi:10.2307/1970754. JSTOR 1970754. 


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.