Runcination

From Wikipedia, the free encyclopedia
A runcinated cubic honeycomb (partial) - The original cells (purple cubes) are reduced in size. Faces become new blue cubic cells. Edges become new red cubic cells. Vertices become new cubic cells (hidden).

In geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges and vertices, creating new facets in place of the original face, edge, and vertex centers.

It is a higher order truncation operation, following cantellation, and truncation.

It is represented by an extended Schläfli symbol t0,3{p,q,...}. This operation only exists for 4-polytopes {p,q,r} or higher.

This operation is dual-symmetric for regular polychora and 3-space convex uniform honeycombs.

For a regular {p,q,r} polychoron, the original {p,q} cells remain, but become separated. The gaps at the separated faces become p-gonal prisms. The gaps between the separated edges become r-gonal prisms. The gaps between the separated vertices become {r,q} cells. The vertex figure for a regular 4-polytope {p,q,r} is an q-gonal antiprism (called an antipodium if p and r are different).

For regular polychora/honeycombs, this operation is also called expansion by Alicia Boole Stott, as imagined by taking the cells of the regular form moving them away from the center and filling in new faces in the gaps for each opened vertex and edge.

Runcinated polychoron/honeycombs forms:

Schläfli symbol
Coxeter-Dynkin
Name Vertex figure Image
Uniform polychora
t0,3{3,3,3}

Runcinated 5-cell
t0,3{3,3,4}

Runcinated 16-cell
(Same as runcinated 8-cell)
t0,3{3,4,3}

Runcinated 24-cell
t0,3{3,3,5}

Runcinated 120-cell
(Same as runcinated 600-cell)
Euclidean convex uniform honeycombs
t0,3{4,3,4}

Runcinated cubic honeycomb
(Same as cubic honeycomb)
Hyperbolic uniform honeycombs
t0,3{4,3,5}

Runcinated order-5 cubic honeycomb
t0,3{3,5,3}

Runcinated icosahedral honeycomb
t0,3{5,3,5}

Runcinated order-5 dodecahedral honeycomb

See also

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (pp. 145–154 Chapter 8: Truncation, p 210 Expansion)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.