Runcinated 5-simplexes
5-simplex |
Runcinated 5-simplex |
Runcitruncated 5-simplex |
Birectified 5-simplex |
Runcicantellated 5-simplex |
Runcicantitruncated 5-simplex |
Orthogonal projections in A5 Coxeter plane |
---|
In six-dimensional geometry, a runcinated 5-simplex is a convex uniform 5-polytope with 3rd order truncations (Runcination) of the regular 5-simplex.
There are 4 unique runcinations of the 5-simplex with permutations of truncations, and cantellations.
Runcinated 5-simplex
Runcinated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | 6 t03{3,3} 20 {3}x{3} 15 {}xt1{3,3} 6 t1{3,3} |
Cells | 255 | 45 {3,3} 180 {}x{3} 30 t1{3,3} |
Faces | 420 | 240 {3} 180 {4} |
Edges | 270 | |
Vertices | 60 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex |
Alternate names
- Runcinated hexateron
- Small prismated hexateron (Acronym: spix) (Jonathan Bowers)[1]
Coordinates
The vertices of the runcinated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,1,1,1,2) or of (0,1,1,1,2,2), seen as facets of a runcinated 6-orthoplex, or a biruncinated 6-cube respectively.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Runcitruncated 5-simplex
Runcitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | 6 t0,1,3{3,3,3} 20 {3}x{6} 15 {}xt1{3,3} 6 t0,2{3,3,3} |
Cells | 315 | |
Faces | 720 | |
Edges | 630 | |
Vertices | 180 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
Alternate names
- Runcitruncated hexateron
- Prismatotruncated hexateron (Acronym: pattix) (Jonathan Bowers)[2]
Coordinates
The coordinates can be made in 6-space, as 180 permutations of:
- (0,0,1,1,2,3)
This construction exists as one of 64 orthant facets of the runcitruncated 6-orthoplex.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Runcicantellated 5-simplex
Runcicantellated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,2,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | |
Cells | 255 | |
Faces | 570 | |
Edges | 540 | |
Vertices | 180 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
Alternate names
- Runcicantellated hexateron
- Biruncitruncated 5-simplex/hexateron
- Prismatorhombated hexateron (Acronym: pirx) (Jonathan Bowers)[3]
Coordinates
The coordinates can be made in 6-space, as 180 permutations of:
- (0,0,1,2,2,3)
This construction exists as one of 64 orthant facets of the runcicantellated 6-orthoplex.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Runcicantitruncated 5-simplex
Runcicantitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,2,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 47 | 6 t0,1,2,3{3,3,3} 20 {3}x{6} 15 {}xt0,1{3,3} 6 t0,1,2{3,3,3} |
Cells | 315 | 45 t0,1,2{3,3} 120 {}x{3} 120 {}x{6} 30 t{3,3} |
Faces | 810 | 120 {3} 450 {4} 240 {6} |
Edges | 900 | |
Vertices | 360 | |
Vertex figure | Irregular 5-cell | |
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
Alternate names
- Runcicantitruncated hexateron
- Great prismated hexateron (Acronym: gippix) (Jonathan Bowers)[4]
Coordinates
The coordinates can be made in 6-space, as 360 permutations of:
- (0,0,1,2,3,4)
This construction exists as one of 64 orthant facets of the runcicantitruncated 6-orthoplex.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Related uniform 5-polytopes
These polytopes are in a set of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
t0 |
t1 |
t2 |
t0,1 |
t0,2 |
t1,2 |
t0,3 |
t1,3 |
t0,4 |
t0,1,2 |
t0,1,3 |
t0,2,3 |
t1,2,3 |
t0,1,4 |
t0,2,4 |
t0,1,2,3 |
t0,1,2,4 |
t0,1,3,4 |
t0,1,2,3,4 |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 5D, uniform polytopes (polytera) x3o3o3x3o - spidtix, x3x3o3x3o - pattix, x3o3x3x3o - pirx, x3x3x3x3o - gippix
External links
- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions, Jonathan Bowers
- Runcinated uniform polytera (spid), Jonathan Bowers
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | BCn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes |