Runcic cubic honeycomb

From Wikipedia, the free encyclopedia
Runcic cubic honeycomb
TypeUniform honeycomb
Schläfli symbolh3{4,3,4}
Coxeter-Dynkin diagrams =
Facerr{4,3}
{4,3}
{3,3}
Vertex figure
Tapered triangular prism
Coxeter group{{\tilde  {B}}}_{4}, [4,31,1]
Symmetry groupFm3m (225)
Dual quarter cubille
Propertiesvertex-transitive

The runcic cubic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of rhombicuboctahedra, cubes, and tetrahedra in a ratio of 1:1:2. Its vertex figure is a triangular prism, with a tetrahedron on one end, cube on the opposite end, and three rhombicuboctahedra around the trapezoidal sides.

John Horton Conway calls this honeycomb a 3-RCO-trille, and its dual quarter cubille.

Images

It is related to the runcinated cubic honycomb, with quarter of the cubes alternated into tetrahedra, and half expanded into rhombicuboctahedra.


Runcinated cubic

Runcic cubic
=
{4,3}, {4,3}, {4,3}, {4,3}
, , ,
h{4,3}, rr{4,3}, {4,3}
, ,

Related honeycombs

Space
group
Fibrifold Extended
symmetry
Extended
diagram
Order Honeycombs
Pm3m
(221)
4:2 [4,3,4] ×1 1, 2, 3, 4,
5, 6
Fm3m
(225)
2:2 [1+,4,3,4]
= [4,31,1]

=
Half 7, 11, 12, 13
I43m
(217)
4o:2 [[(4,3,4,2+)]] Half × 2 (7),
Fd3m
(227)
2+:2 [[1+,4,3,4,1+]]
= [[3[4]]]

=
Quarter × 2 10,
Im3m
(229)
8o:2 [[4,3,4]] ×2

(1), 8, 9

The [4,31,1], , Coxeter group generates 9 permutations of uniform tessellations, 4 with distinct geometry including the alternated cubic honeycomb.

Space
group
Fibrifold Extended
symmetry
Extended
diagram
Order Honeycombs
Fm3m
(225)
2:2 [4,31,1]
= [4,3,4,1+]

=
×1 1, 2, 3, 4
Fm3m
(225)
2:2 <[1+,4,31,1]>
= <[3[4]]>

=
×2 (1), (3)
Pm3m
(221)
4:2 <[4,31,1]> ×2

5, 6, 7, (6), 9, 10, 11

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. 
  • Critchlow, Keith (1970). Order in Space: A design source book. Viking Press. ISBN 0-500-34033-1. 
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions. New York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes
  • Richard Klitzing, 3D Euclidean Honeycombs, x3o3o *b4x - ratoh - O26
  • Uniform Honeycombs in 3-Space: 12-Ratoh
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.