Rose (mathematics)
In mathematics, a rose or rhodonea curve is a sinusoid plotted in polar coordinates.
General overview
Up to similarity, these curves can all be expressed by a polar equation of the form
or, alternatively, as a pair of Cartesian parametric equations of the form
If k is an integer, the curve will be rose shaped with
- 2k petals if k is even, and
- k petals if k is odd.
When k is even, the entire graph of the rose will be traced out exactly once when the value of θ changes from 0 to 2π. When k is odd, this will happen on the interval between 0 and π. (More generally, this will happen on any interval of length 2π for k even, and π for k odd.)
If k ends in 1/2 (ex: 0.5, 2.5), the curve will be rose shaped with 4k petals.
If k ends in 1/6 or 5/6 and is greater than 1 (ex: 1.16666667, 2.8333333), the curve will be rose shaped with 12k petals.
If k ends in 1/3 and is greater than 1 (ex: 1.333333, 2.333333), the curve will be rose shaped and will have:
- 3k petals if k is even, and
- 6k petals if k is odd.
If k ends in 2/3 and is greater than 1 (ex: 1.666667, 2.666667), the curve will be rose shaped and will have:
- 6k petals if k is even, and
- 3k petals if k is odd.
If k is rational, then the curve is closed and has finite length. If k is irrational, then it is not closed and has infinite length. Furthermore, the graph of the rose in this case forms a dense set (i.e., it comes arbitrarily close to every point in the unit disk).
Since
for all , the curves given by the polar equations
- and
are identical except for a rotation of π/2k radians.
Rhodonea curves were named by the Italian mathematician Guido Grandi between the year 1723 and 1728.[1]
Area
A rose whose polar equation is of the form
where k is a positive integer, has area
if k is even, and
if k is odd.
The same applies to roses with polar equations of the form
since the graphs of these are just rigid rotations of the roses defined using the cosine.
How the parameter k affects shapes
In the form k = n, for integer n, the shape will appear similar to a flower. If n is odd half of these will overlap, forming a flower with n petals. However if it is even the petals will not overlap, forming a flower with 2n petals.
When d is a prime number then n/d is a least common form and the petals will stretch around to overlap other petals. The number of petals each one overlaps is equal to the how far through the sequence of primes this prime is +1, i.e. 2 is 2, 3 is 3, 5 is 4, 7 is 5, etc.
In the form k = 1/d when d is even then it will appear as a series of d/2 loops that meet at 2 small loops at the center touching (0, 0) from the vertical and is symmetrical about the x-axis. If d is odd then it will have d div 2 loops that meet at a small loop at the center from ether the left (when in the form d = 4n − 1) or the right (d = 4n + 1).
If d is not prime and n is not 1, then it will appear as a series of interlocking loops.
If k is an irrational number (e.g. , , etc.) then the curve will have infinitely many petals, and it will be dense in the unit disc.
See also
- Lissajous curve
- quadrifolium - a rose curve with k = 2.
- Maurer rose
- Rose (topology)
Notes
- ↑ O'Connor, John J.; Robertson, Edmund F., "Rhodonea", MacTutor History of Mathematics archive, University of St Andrews.
External links
Wikimedia Commons has media related to Rose curves. |
- Weisstein, Eric W., "Rose", MathWorld.
- Applet to create rose with k parameter
- Visual Dictionary of Special Plane Curves Xah Lee
- Interactive example with JSXGraph