Rodion Kuzmin

From Wikipedia, the free encyclopedia
Rodion Kuzmin

Rodion Kusmin, circa 1926
Born (1891-10-09)9 October 1891
Riabye village in the Haradok district
Died April 23, 1949(1949-04-23) (aged 57)
Leningrad
Nationality Russian
Fields Mathematics
Institutions Perm State University, Tomsk Polytechnic University, Saint Petersburg State Polytechnical University
Alma mater Saint Petersburg State University nee Petrograd University
Doctoral advisor James Victor Uspensky
Known for Gauss–Kuzmin distribution, number theory and mathematical analysis.

Rodion Osievich Kuzmin (Russian: Родион Осиевич Кузьмин, Nov. 9, 1891, Riabye village in the Haradok district March 23, 1949, Leningrad) was a Russian mathematician, known for his works in number theory and analysis.[1]

Selected results

x={\frac  {1}{k_{1}+{\frac  {1}{k_{2}+\cdots }}}}
is its continued fraction expansion, find a bound for
\Delta _{n}(s)={\mathbb  {P}}\left\{x_{n}\leq s\right\}-\log _{2}(1+s),
where
x_{n}={\frac  {1}{k_{{n+1}}+{\frac  {1}{k_{{n+2}}+\cdots }}}}.
Gauss showed that Δn tends to zero as n goes to infinity, however, he was unable to give an explicit bound. Kuzmin showed that
|\Delta _{n}(s)|\leq Ce^{{-\alpha {\sqrt  {n}}}}~,
where C,α > 0 are numerical constants. In 1929, the bound was improved to C 0.7n by Paul Lévy.
2^{{{\sqrt  {2}}}}=2.6651441426902251886502972498731\ldots
is transcendental. See Gelfond–Schneider theorem for later developments.

Notes

  1. Venkov, B. A.; Natanson, I. P.. "R. O. Kuz’min (1891–1949) (obituary)". Uspekhi matematicheskikh nauk 4 (4): 148155. 
  2. Kuzmin, R.O. (1928). "On a problem of Gauss". DAN SSSR: 375380. 
  3. Kuzmin, R. O. (1930). "On a new class of transcendental numbers". Izvestiya Akademii Nauk SSSR (math.) 7: 585597. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.