Rhombitrihexagonal tiling

From Wikipedia, the free encyclopedia
Rhombitrihexagonal tiling

TypeSemiregular tiling
Vertex configuration3.4.6.4
Schläfli symbolrr{6,3}
Wythoff symbol3 | 6 2
Coxeter diagram
Symmetryp6m, [6,3], (*632)
Rotation symmetryp6, [6,3]+, (632)
Bowers acronymRothat
DualDeltoidal trihexagonal tiling
PropertiesVertex-transitive

Vertex figure: 3.4.6.4

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

John Conway calls it a rhombihexadeltille.[1] It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language.

There are 3 regular and 8 semiregular tilings in the plane.

Uniform colorings

There is only one uniform coloring in a rhombitrihexagonal tiling. (Naming the colors by indices around a vertex (3.4.6.4): 1232.)

With edge-colorings there is a half symmetry form (3*3) orbifold notation. The hexagons can be considered as truncated triangles, t{3} with two types of edges. It has Coxeter diagram , Schläfli symbol s2{3,6}. The bicolored square can be distorted into isosceles trapezoids. In the limit, where the rectangles degenerate into edges, a triangular tiling results, constructed as a snub triangular tiling, .

Symmetry [6,3], (*632) [6,3+], (3*3)
Name Rhombitrihexagonal tiling Cantic snub triangular tiling Snub triangular tiling
Image
Uniform face coloring

Uniform edge coloring

Snub triangular tiling
Schläfli symbol
Coxeter diagram
rr{3,6}
s2{3,6}
s{3,6}

Related polyhedra and tilings

There are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling). Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+
(632)
[1+,6,3]
(*333)
[6,3+]
(3*3)
{6,3} t{6,3} r{6,3}
r{3[3]}
t{3,6}
t{3[3]}
{3,6}
{3[3]}
rr{6,3}
s2{6,3}
tr{6,3} sr{6,3} h{6,3}
{3[3]}
h2{6,3}
r{3[3]}
s{3,6}
s{3[3]}

=

=

=
=
or
=
or

=





Uniform duals
V63 V3.122 V(3.6)2 V63 V36 V3.4.12.4 V.4.6.12 V34.6 V36 V(3.6)2 V36

This tiling is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

Dimensional family of expanded polyhedra and tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclidean Hyperbolic...
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*32
[,3]
 
Expanded
figure

3.4.2.4

3.4.3.4

3.4.4.4

3.4.5.4

3.4.6.4

3.4.7.4

3.4.8.4

3.4..4
Coxeter
Schläfli

rr{2,3}

rr{3,3}

rr{4,3}

rr{5,3}

rr{6,3}

rr{7,3}

rr{8,3}

rr{,3}
Deltoidal figure
V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4..4
Coxeter

The hexagonal cupola contains the pattern of this tiling, but closes it into a degenerate polygon with a dodecagon base.

Family of cupolae
2 3 4 5 6

Digonal cupola

Triangular cupola

Square cupola

Pentagonal cupola

Hexagonal cupola
(Flat)

Circle packing

The Rhombitrihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 4 other circles in the packing (kissing number). The gap inside each hexagon allows for one circle, for a denser packing with kissing number 5.

Gallery


An ornamental version

Nonuniform pattern
(with rectangles)

The game Kensington

See also

  • Tilings of regular polygons
  • List of uniform tilings

Notes

  1. Conway, 2008, p288 table

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.