Rhombitetraapeirogonal tiling
From Wikipedia, the free encyclopedia
Rhombitetraapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 4.4.∞.4 |
Schläfli symbol | rr{∞,4} |
Wythoff symbol | 4 | ∞ 2 |
Coxeter diagram | |
Symmetry group | [∞,4], (*∞42) |
Dual | Deltoidal tetraapeirogonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitetrapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.
Constructions
There are two uniform constructions of this tiling, one from [∞,4] or (*∞42) symmetry, and secondly removing the miror middle, [∞,1+,4], gives a rectangular fundamental domain [∞,∞,∞], (*∞222).
Name | Rhombitetrahexagonal tiling | |
---|---|---|
Image | ||
Symmetry | [∞,4] (*∞42) |
[∞,∞,∞] = [∞,1+,4] (*∞222) |
Schläfli symbol | rr{∞,4} | t0,1,2,3{∞,∞,∞} |
Coxeter diagram |
Symmetry
The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.
Related polyhedra and tiling
Symmetry [n,4], (*n42) |
Spherical | Euclidean | Hyperbolic tiling | ||||
---|---|---|---|---|---|---|---|
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4] |
*∞42 [∞,4] | |
Quasiregular figures |
|||||||
Coxeter Schläfli |
rr{3,4} |
rr{4,4} |
rr{5,4} |
rr{6,4} |
rr{7,4} |
rr{8,4} |
rr{∞,4} |
Dual (rhombic) figures configuration |
V3.4.4.4 |
V4.4.4.4 |
5.4.4.4 |
V6.4.4.4 |
V7.4.4.4 |
V8.4.4.4 |
V∞.4.4.4 |
Coxeter |
Symmetry: [∞,4], (*∞42) | |||||||
---|---|---|---|---|---|---|---|
{∞,4} | t{∞,4} | r{∞,4} | 2t{∞,4}=t{4,∞} | 2r{∞,4}={4,∞} | rr{∞,4} | tr{∞,4} | |
Dual figures | |||||||
V∞4 | V4.∞.∞ | V(4.∞)2 | V8.8.∞ | V4∞ | V43.∞ | V4.8.∞ | |
Alternations | |||||||
[1+,∞,4] (*44∞) |
[∞+,4] (∞*2) |
[∞,1+,4] (*2∞2∞) |
[∞,4+] (4*∞) |
[∞,4,1+] (*∞∞2) |
[(∞,4,2+)] (2*2∞) |
[∞,4]+ (∞42) | |
h{∞,4} | s{∞,4} | hr{∞,4} | s{4,∞} | h{4,∞} | hrr{∞,4} | s{∞,4} | |
Alternation duals | |||||||
V(∞.4)4 | V3.(3.∞)2 | V(4.∞.4)2 | V3.∞.(3.4)2 | V∞∞ | V∞.44 | V3.3.4.3.∞ |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-i. |
- Square tiling
- Tilings of regular polygons
- List of uniform planar tilings
- List of regular polytopes
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.