Rhombitetraapeirogonal tiling

From Wikipedia, the free encyclopedia
Rhombitetraapeirogonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex figure4.4..4
Schläfli symbolrr{,4}
Wythoff symbol4 | 2
Coxeter diagram
Symmetry group[,4], (*42)
DualDeltoidal tetraapeirogonal tiling
PropertiesVertex-transitive

In geometry, the rhombitetrapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{,4}.

Constructions

There are two uniform constructions of this tiling, one from [,4] or (*42) symmetry, and secondly removing the miror middle, [,1+,4], gives a rectangular fundamental domain [,,], (*222).

Two uniform constructions of 4.4.4.
Name Rhombitetrahexagonal tiling
Image
Symmetry [,4]
(*42)
[∞,,∞] = [,1+,4]
(*222)
Schläfli symbol rr{,4} t0,1,2,3{∞,,∞}
Coxeter diagram

Symmetry

The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.

Related polyhedra and tiling

Dimensional family of expanded polyhedra and tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Hyperbolic tiling
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*42
[,4]
Quasiregular
figures
Coxeter
Schläfli

rr{3,4}

rr{4,4}

rr{5,4}

rr{6,4}

rr{7,4}

rr{8,4}

rr{,4}
Dual
(rhombic)
figures
configuration

V3.4.4.4

V4.4.4.4

5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V.4.4.4
Coxeter
Noncompact hyperbolic uniform tilings in [,4] family
Symmetry: [,4], (*42)
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Alternation duals
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 

See also

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.