Resistance distance
In graph theory, the resistance distance between two vertices of a simple connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a 1 ohm resistance. It is a metric on graphs.
Definition
On a graph G, the resistance distance Ωi,j between two vertices vi and vj is
where Γ is the Moore–Penrose inverse of the Laplacian matrix of G.
Properties of resistance distance
If i = j then
For an undirected graph
General sum rule
For any N-vertex simple connected graph G = (V, E) and arbitrary N×N matrix M:
From this generalized sum rule a number of relationships can be derived depending on the choice of M. Two of note are;
where the are the non-zero eigenvalues of the Laplacian matrix. This unordered sum Σi<jΩi,j is called the Kirchhoff index of the graph.
Relationship to the number of spanning trees of a graph
For a simple connected graph G = (V, E), the resistance distance between two vertices may by expressed as a function of the set of spanning trees, T, of G as follows:
where is the set of spanning trees for the graph .
As a squared Euclidean distance
Since the Laplacian is symmetric and positive semi-definite, its pseudoinverse is also symmetric and positive semi-definite. Thus, there is a such that and we can write:
showing that the square root of the resistance distance corresponds to the Euclidean distance in the space spanned by .
See also
References
- Klein, D. J.; Randic, M. J. (1993). "Resistance Distance". J. Math. Chem. 12: 81. doi:10.1007/BF01164627.
- Gutman, Ivan; Mohar, Bojan (1996). "The quasi-Wiener and the Kirchhoff indices coincide". J. Chem. Inf. Comput. Sci. 36: 982–985. doi:10.1021/ci960007t.
- Palacios, Jose Luis (2001). "Closed-form formulas for the Kirchhoff index". Int. J. Quant. Chem. 81: 135–140. doi:10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G.
- Babic, D.; Klein, D. J.; Lukovits, I.; Nikolic, S.; Trinajstic, N. (2002). "Resistance-distance matrix: a computational algorithm and its application". Int. J. Quant. Chem. 90 (1): 166–167. doi:10.1002/qua.10057.
- Klein, D. J. (2002). "Resistance Distance Sum Rules". Croatica Chem. Acta 75 (2): 633–649.
- Bapat, Ravindra B.; Gutman, Ivan; Xiao, Wenjun (2003). "A simple method for computing resistance distance". Z. Naturforsch. 58a: 494–498.
- Placios, Jose Luis (2004). "Foster's formulas via probability and the Kirchhoff index". Method. Comput. Appl. Probal. 6 (4): 381–387. doi:10.1023/B:MCAP.0000045086.76839.54.
- Bendito, Enrique; Carmona, Angeles; Encinas, Andres M.; Gesto, Jose M. (2008). "A formula for the Kirhhoff index". Int. J. Quant. Chem. 108 (6): 1200–1206. Bibcode:2008IJQC..108.1200B. doi:10.1002/qua.21588.
- Zhou, Bo; Trinajstic, Nenad (2009). "The Kirchhoff index and the matching number". Int. J. Quant. Chem. 109: 2978–2981. Bibcode:2009IJQC..109.2978Z. doi:10.1002/qua.21915.
- Zhou, Bo; Trinajstic, Nenad (2009). "On resistance-distance and the Kirchhoff index". J. Math. Chem. 46: 283–289. doi:10.1007/s10910-008-9459-3.
- Zhou, Bo. "On sum of powers of Laplacian eigenvalues and Laplacian Estrada Index of graphs". arXiv:1102.1144.
- Zhang, Heping; Yang, Yujun (2007). "Resistance distance and Kirchhoff index in circulant graphs". Int. J. Quantum Chem. 107: 330–339. Bibcode:2007IJQC..107..330Z. doi:10.1002/qua.21068.
- Yang, Yujun; Zhang, Heping (2008). "Some rules on resistance distance with applications". J. Phys. A: Math. Theor. 41: 445203. Bibcode:2008JPhA...41R5203Y. doi:10.1088/1751-8113/41/44/445203.