Remak decomposition
From Wikipedia, the free encyclopedia
In mathematics, a Remak decomposition, introduced by Remak (1911), is a decomposition of an abelian group or similar object into a finite direct sum of indecomposable objects.
The Krull–Schmidt theorem gives conditions for a Remak decomposition to exist and for its factors to be unique.
References
- Remak, Robert (1911), "Über die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren", Journal für die reine und angewandte Mathematik (in German) 139: 293–308, doi:10.1515/crll.1911.139.293, ISSN 0075-4102, JFM 42.0156.01
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.