Region (mathematical analysis)
From Wikipedia, the free encyclopedia
In mathematical analysis, the word region usually refers to a subset of or that is open (in the standard Euclidean topology), connected and non-empty. A closed region is sometimes defined to be the closure of a region.
Regions and closed regions are often used as domains of functions or differential equations.
According to Kreyszig,[1]
- A region is a set consisting of a domain plus, perhaps, some or all of its boundary points. (The reader is warned that some authors use the term "region" for what we call a domain [following standard terminology], and others make no distinction between the two terms.)
According to Yue Kuen Kwok,
- An open connected set is called an open region or domain. ...to an open region we may add none, some, or all its limit points, and simply call the new set a region.[2]
See also
Notes and references
- ↑ Erwin Kreyszig (1993) Advanced Engineering Mathematics, 7th edition, p. 720, John Wiley & Sons, ISBN 0-471-55380-8
- ↑ Yue Kuen Kwok (2002) Applied Complex Variables for Scientists and Engineers, § 1.4 Some topological definitions, p 23, Cambridge University Press, ISBN 0-521-00462-4
- Ruel V. Churchill (1960) Complex variables and applications, 2nd edition, §1.9 Regions in the complex plane, pp. 16 to 18, McGraw-Hill
- Constantin Carathéodory (1954) Theory of Functions of a Complex Variable, v. I, p. 97, Chelsea Publishing.
- Howard Eves (1966) Functions of a Complex Variable, p. 105, Prindle, Weber & Schmidt.
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.