Reeb foliation
From Wikipedia, the free encyclopedia
In mathematics, the Reeb foliation is a particular foliation of the 3-sphere, introduced by the French mathematician Georges Reeb (1920–1992).
It is based on dividing the sphere into two solid tori, along a 2-torus: see Clifford torus. Each of the solid tori is then foliated internally, in codimension 1, and the dividing torus surface forms one more leaf.
Illustrations
|
|
References
- G. Reeb (1952). Sur certaines propriétés toplogiques des variétés feuillétées. Actualités Sci. Indust. 1183. Paris: Hermann.
- Alberto Candel; Lawrence Conlon (2000). Foliations. American Mathematical Society. p. 93. ISBN 0-8218-0809-5.
- Ieke Moerdijk; J. Mrcun (2003). Introduction to Foliations and Lie Groupoids. Cambridge studies in advanced mathematics 91. Cambridge University Press. p. 8. ISBN 0-521-83197-0.
External links
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.