Rectified 9-simplexes

From Wikipedia, the free encyclopedia

9-simplex

Rectified 9-simplex

Birectified 9-simplex

Trirectified 9-simplex

Quadrirectified 9-simplex
Orthogonal projections in A9 Coxeter plane

In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-simplex.

These polytopes are part of a family of 271 uniform 9-polytopes with A9 symmetry.

There are unique 4 degrees of rectifications. Vertices of the rectified 9-simplex are located at the edge-centers of the 9-simplex. Vertices of the birectified 9-simplex are located in the triangular face centers of the 9-simplex. Vertices of the trirectified 9-simplex are located in the tetrahedral cell centers of the 9-simplex. Vertices of the quadrirectified 9-simplex are located in the 5-cell centers of the 9-simplex.

Rectified 9-simplex

Rectified 9-simplex
Typeuniform polyyotton
Schläfli symbol t1{3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges360
Vertices45
Vertex figure8-simplex prism
Petrie polygondecagon
Coxeter groupsA9, [3,3,3,3,3,3,3,3]
Propertiesconvex

The rectified 9-simplex is the vertex figure of the 10-demicube.

Alternate names

  • Rectified decayotton (reday) (Jonathan Bowers)[1]

Coordinates

The Cartesian coordinates of the vertices of the rectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 10-orthoplex.

Images

orthographic projections
Ak Coxeter plane A9 A8 A7 A6
Graph
Dihedral symmetry [10] [9] [8] [7]
Ak Coxeter plane A5 A4 A3 A2
Graph
Dihedral symmetry [6] [5] [4] [3]

Birectified 9-simplex

Birectified 9-simplex
Typeuniform polyyotton
Schläfli symbol t2{3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges1260
Vertices120
Vertex figure{3}x{3,3,3,3,3}
Coxeter groupsA9, [3,3,3,3,3,3,3,3]
Propertiesconvex

This polytope is the vertex figure for the 162 honeycomb. Its 120 vertices represent the kissing number of the related hyperbolic 10-dimensional sphere packing.

Alternate names

  • Birectified decayotton (breday) (Jonathan Bowers)[2]

Coordinates

The Cartesian coordinates of the vertices of the birectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 10-orthoplex.

Images

orthographic projections
Ak Coxeter plane A9 A8 A7 A6
Graph
Dihedral symmetry [10] [9] [8] [7]
Ak Coxeter plane A5 A4 A3 A2
Graph
Dihedral symmetry [6] [5] [4] [3]

Trirectified 9-simplex

Trirectified 9-simplex
Typeuniform polyyotton
Schläfli symbol t3{3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure{3,3}x{3,3,3,3}
Coxeter groupsA9, [3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

  • Trirectified decayotton (treday) (Jonathan Bowers)[3]

Coordinates

The Cartesian coordinates of the vertices of the trirectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 10-orthoplex.

Images

orthographic projections
Ak Coxeter plane A9 A8 A7 A6
Graph
Dihedral symmetry [10] [9] [8] [7]
Ak Coxeter plane A5 A4 A3 A2
Graph
Dihedral symmetry [6] [5] [4] [3]

Quadrirectified 9-simplex

Quadrirectified 9-simplex
Typeuniform polyyotton
Schläfli symbol t4{3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure{3,3,3}x{3,3,3}
Coxeter groupsA9, [3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

  • Quadrirectified decayotton
  • Icosayotton (icoy) (Jonathan Bowers)[4]

Coordinates

The Cartesian coordinates of the vertices of the quadrirectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,1,1,1,1,1). This construction is based on facets of the quadrirectified 10-orthoplex.

Images

orthographic projections
Ak Coxeter plane A9 A8 A7 A6
Graph
Dihedral symmetry [10] [9] [8] [7]
Ak Coxeter plane A5 A4 A3 A2
Graph
Dihedral symmetry [6] [5] [4] [3]

Notes

  1. Klitzing, (o3x3o3o3o3o3o3o3o - reday)
  2. Klitzing, (o3o3x3o3o3o3o3o3o - breday)
  3. Klitzing, (o3o3o3x3o3o3o3o3o - treday)
  4. Klitzing, (o3o3o3o3x3o3o3o3o - icoy)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Richard Klitzing, 9D, uniform polytopes (polyyotta) o3x3o3o3o3o3o3o3o - reday, o3o3x3o3o3o3o3o3o - breday, o3o3o3x3o3o3o3o3o - treday, o3o3o3o3x3o3o3o3o - icoy

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.