Rational zeta series

From Wikipedia, the free encyclopedia

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

x=\sum _{{n=2}}^{\infty }q_{n}\zeta (n,m)

where qn is a rational number, the value m is held fixed, and ζ(s, m) is the Hurwitz zeta function. It is not hard to show that any real number x can be expanded in this way.

Elementary series

For integer m>1, one has

x=\sum _{{n=2}}^{\infty }q_{n}\left[\zeta (n)-\sum _{{k=1}}^{{m-1}}k^{{-n}}\right]

For m=2, a number of interesting numbers have a simple expression as rational zeta series:

1=\sum _{{n=2}}^{\infty }\left[\zeta (n)-1\right]

and

1-\gamma =\sum _{{n=2}}^{\infty }{\frac  {1}{n}}\left[\zeta (n)-1\right]

where γ is the Euler–Mascheroni constant. The series

\log 2=\sum _{{n=1}}^{\infty }{\frac  {1}{n}}\left[\zeta (2n)-1\right]

follows by summing the Gauss–Kuzmin distribution. There are also series for π:

\log \pi =\sum _{{n=2}}^{\infty }{\frac  {2(3/2)^{n}-3}{n}}\left[\zeta (n)-1\right]

and

{\frac  {13}{30}}-{\frac  {\pi }{8}}=\sum _{{n=1}}^{\infty }{\frac  {1}{4^{{2n}}}}\left[\zeta (2n)-1\right]

being notable because of its fast convergence. This last series follows from the general identity

\sum _{{n=1}}^{\infty }(-1)^{{n}}t^{{2n}}\left[\zeta (2n)-1\right]={\frac  {t^{2}}{1+t^{2}}}+{\frac  {1-\pi t}{2}}-{\frac  {\pi t}{e^{{2\pi t}}-1}}

which in turn follows from the generating function for the Bernoulli numbers

{\frac  {x}{e^{x}-1}}=\sum _{{n=0}}^{\infty }B_{n}{\frac  {t^{n}}{n!}}

Adamchik and Srivastava give a similar series

\sum _{{n=1}}^{\infty }{\frac  {t^{{2n}}}{n}}\zeta (2n)=\log \left({\frac  {\pi t}{\sin(\pi t)}}\right)

Polygamma-related series

A number of additional relationships can be derived from the Taylor series for the polygamma function at z = 1, which is

\psi ^{{(m)}}(z+1)=\sum _{{k=0}}^{\infty }(-1)^{{m+k+1}}(m+k)!\;\zeta (m+k+1)\;{\frac  {z^{k}}{k!}}.

The above converges for |z| < 1. A special case is

\sum _{{n=2}}^{\infty }t^{n}\left[\zeta (n)-1\right]=-t\left[\gamma +\psi (1-t)-{\frac  {t}{1-t}}\right]

which holds for |t| < 2. Here, ψ is the digamma function and ψ(m) is the polygamma function. Many series involving the binomial coefficient may be derived:

\sum _{{k=0}}^{\infty }{k+\nu +1 \choose k}\left[\zeta (k+\nu +2)-1\right]=\zeta (\nu +2)

where ν is a complex number. The above follows from the series expansion for the Hurwitz zeta

\zeta (s,x+y)=\sum _{{k=0}}^{\infty }{s+k-1 \choose s-1}(-y)^{k}\zeta (s+k,x)

taken at y = 1. Similar series may be obtained by simple algebra:

\sum _{{k=0}}^{\infty }{k+\nu +1 \choose k+1}\left[\zeta (k+\nu +2)-1\right]=1

and

\sum _{{k=0}}^{\infty }(-1)^{k}{k+\nu +1 \choose k+1}\left[\zeta (k+\nu +2)-1\right]=2^{{-(\nu +1)}}

and

\sum _{{k=0}}^{\infty }(-1)^{k}{k+\nu +1 \choose k+2}\left[\zeta (k+\nu +2)-1\right]=\nu \left[\zeta (\nu +1)-1\right]-2^{{-\nu }}

and

\sum _{{k=0}}^{\infty }(-1)^{k}{k+\nu +1 \choose k}\left[\zeta (k+\nu +2)-1\right]=\zeta (\nu +2)-1-2^{{-(\nu +2)}}

For integer n  0, the series

S_{n}=\sum _{{k=0}}^{\infty }{k+n \choose k}\left[\zeta (k+n+2)-1\right]

can be written as the finite sum

S_{n}=(-1)^{n}\left[1+\sum _{{k=1}}^{n}\zeta (k+1)\right]

The above follows from the simple recursion relation Sn + Sn + 1 = ζ(n + 2). Next, the series

T_{n}=\sum _{{k=0}}^{\infty }{k+n-1 \choose k}\left[\zeta (k+n+2)-1\right]

may be written as

T_{n}=(-1)^{{n+1}}\left[n+1-\zeta (2)+\sum _{{k=1}}^{{n-1}}(-1)^{k}(n-k)\zeta (k+1)\right]

for integer n  1. The above follows from the identity Tn + Tn + 1 = Sn. This process may be applied recursively to obtain finite series for general expressions of the form

\sum _{{k=0}}^{\infty }{k+n-m \choose k}\left[\zeta (k+n+2)-1\right]

for positive integers m.

Half-integer power series

Similar series may be obtained by exploring the Hurwitz zeta function at half-integer values. Thus, for example, one has

\sum _{{k=0}}^{\infty }{\frac  {\zeta (k+n+2)-1}{2^{k}}}{{n+k+1} \choose {n+1}}=\left(2^{{n+2}}-1\right)\zeta (n+2)-1

Expressions in the form of p-series

Adamchik and Srivastava give

\sum _{{n=2}}^{\infty }n^{m}\left[\zeta (n)-1\right]=1\,+\sum _{{k=1}}^{m}k!\;S(m+1,k+1)\zeta (k+1)

and

\sum _{{n=2}}^{\infty }(-1)^{n}n^{m}\left[\zeta (n)-1\right]=-1\,+\,{\frac  {1-2^{{m+1}}}{m+1}}B_{{m+1}}\,-\sum _{{k=1}}^{m}(-1)^{k}k!\;S(m+1,k+1)\zeta (k+1)

where B_{k} are the Bernoulli numbers and S(m,k) are the Stirling numbers of the second kind.

Other series

Other constants that have notable rational zeta series are:

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.