Radiant energy density
In radiometry, radiant energy density is the measure of the amount of radiant energy per unit volume at a given location and time.[1] Its SI unit is joule per cubic metre (J/m3).
It is defined by
where
Relation to other radiometric quantities
Because radiation always transmits the energy,[2] it is useful to wonder what the speed of the transmission is. If all the radiation at given location propagates in the same direction, then the radiant flux through a unit area perpendicular to the propagation direction is expressed by radiant flux density, whose value is
where
- is the radiant flux density (i.e. radiant flux per unit area),
- is the speed of light (generally radiation propagation speed),
- is the radiant energy density.
Contrarily if the radiation intensity is equal in all directions, like in a cavity in a thermodynamic equilibrium, then the energy transmition is best described by radiance (i.e. radiant flux per unit area and unit solid angle), whose value is
Radiant exitance through a small opening from such cavity is .[4] These relations can be used for example in the black body radiation equations derivation.
References
- ↑ IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Radiant energy density. Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.R05040. Last update: 2012-08-19; version: 2.3.2. Visited 2013-10-07.
- ↑ 2.0 2.1 2.2 Karel Rusňák. Přenos energie elektromagnetickým vlněním. Department of Physics, Faculty of Applied Sciences, University of West Bohemia. 2005-11. Visited 2013-10-06
- ↑ Max Plack. The Theory of Heat Radiation. Equation 21. 1914.
- ↑ Max Plack. The Theory of Heat Radiation. Equation 7. 1914.
Quantity | Unit | Dimension | Notes | |||||
---|---|---|---|---|---|---|---|---|
Name | Symbol[nb 1] | Name | Symbol | Symbol | ||||
Radiant energy | Qe[nb 2] | joule | J | M⋅L2⋅T−2 | energy | |||
Radiant flux | Φe[nb 2] | watt | W or J/s | M⋅L2⋅T−3 | radiant energy per unit time, also called radiant power. | |||
Spectral power | Φeλ[nb 2][nb 3] | watt per metre | W⋅m−1 | M⋅L⋅T−3 | radiant power per wavelength. | |||
Radiant intensity | Ie | watt per steradian | W⋅sr−1 | M⋅L2⋅T−3 | power per unit solid angle. | |||
Spectral intensity | Ieλ[nb 3] | watt per steradian per metre | W⋅sr−1⋅m−1 | M⋅L⋅T−3 | radiant intensity per wavelength. | |||
Radiance | Le | watt per steradian per square metre | W⋅sr−1⋅m−2 | M⋅T−3 | power per unit solid angle per unit projected source area. confusingly called "intensity" in some other fields of study. | |||
Spectral radiance | Leλ[nb 3] or Leν[nb 4] |
watt per steradian per metre3 or watt per steradian per square |
W⋅sr−1⋅m−3 or W⋅sr−1⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
commonly measured in W⋅sr−1⋅m−2⋅nm−1 with surface area and either wavelength or frequency. | |||
Irradiance | Ee[nb 2] | watt per square metre | W⋅m−2 | M⋅T−3 | power incident on a surface, also called radiant flux density. sometimes confusingly called "intensity" as well. | |||
Spectral irradiance | Eeλ[nb 3] or Eeν[nb 4] |
watt per metre3 or watt per square metre per hertz |
W⋅m−3 or W⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
commonly measured in W⋅m−2⋅nm−1 or 10−22 W⋅m−2⋅Hz−1, known as solar flux unit.[nb 5] | |||
Radiant exitance / Radiant emittance |
Me[nb 2] | watt per square metre | W⋅m−2 | M⋅T−3 | power emitted from a surface. | |||
Spectral radiant exitance / Spectral radiant emittance |
Meλ[nb 3] or Meν[nb 4] |
watt per metre3 or watt per square |
W⋅m−3 or W⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
power emitted from a surface per unit wavelength or frequency. | |||
Radiosity | Je | watt per square metre | W⋅m−2 | M⋅T−3 | emitted plus reflected power leaving a surface. | |||
Spectral radiosity | Jeλ[nb 3] | watt per metre3 | W⋅m−3 | M⋅L−1⋅T−3 | emitted plus reflected power leaving a surface per unit wavelength | |||
Radiant exposure | He | joule per square metre | J⋅m−2 | M⋅T−2 | also referred to as fluence | |||
Radiant energy density | ωe | joule per metre3 | J⋅m−3 | M⋅L−1⋅T−2 | ||||
See also: SI · Radiometry · Photometry |
- ↑ Standards organizations recommend that radiometric quantities should be denoted with a suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
- ↑ 2.0 2.1 2.2 2.3 2.4 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant emittance.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Spectral quantities given per unit wavelength are denoted with suffix "λ" (Greek) to indicate a spectral concentration. Spectral functions of wavelength are indicated by "(λ)" in parentheses instead, for example in spectral transmittance, reflectance and responsivity.
- ↑ 4.0 4.1 4.2 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek)—not to be confused with the suffix "v" (for "visual") indicating a photometric quantity.
- ↑ NOAA / Space Weather Prediction Center includes a definition of the solar flux unit (SFU).