Prefabrication
Prefabrication is the practice of assembling components of a structure in a factory or other manufacturing site, and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be located. The term is used to distinguish this process from the more conventional construction practice of transporting the basic materials to the construction site where all assembly is carried out.
The term prefabrication also applies to the manufacturing of things other than structures at a fixed site. It is frequently used when fabrication of a section of a machine or any movable structure is shifted from the main manufacturing site to another location, and the section is supplied assembled and ready to fit. It is not generally used to refer to electrical or electronic components of a machine, or mechanical parts such as pumps, gearboxes and compressors which are usually supplied as separate items, but to sections of the body of the machine which in the past were fabricated with the whole machine. Prefabricated parts of the body of the machine may be called 'sub-assemblies' to distinguish them from the other components.
The process and theory of prefabrication
An example from house-building illustrates the process of prefabrication. The conventional method of building a house is to transport bricks, timber, cement, sand, steel and construction aggregate, etc. to the site, and to construct the house on site from these materials. In prefabricated construction, only the foundations are constructed in this way, while sections of walls, floors and roof are prefabricated (assembled) in a factory (possibly with window and door frames included), transported to the site, lifted into place by a crane and bolted together.
Prefabrication is used in the manufacture of ships, aircraft and all kinds of vehicles and machines where sections previously assembled at the final point of manufacture are assembled elsewhere instead, before being delivered for final assembly.
The theory behind the method is that time and cost is saved if similar construction tasks can be grouped, and assembly line techniques can be employed in prefabrication at a location where skilled labour is available, while congestion at the assembly site, which wastes time, can be reduced. The method finds application particularly where the structure is composed of repeating units or forms, or where multiple copies of the same basic structure are being constructed. Prefabrication avoids the need to transport so many skilled workers to the construction site, and other restricting conditions such as a lack of power, lack of water, exposure to harsh weather or a hazardous environment are avoided. Against these advantages must be weighed the cost of transporting prefabricated sections and lifting them into position as they will usually be larger, more fragile and more difficult to handle than the materials and components of which they are made.
History
Prefabrication has been used since ancient times. For example, it is claimed that the world's oldest known engineered roadway, the Sweet Track constructed in England around 3800 BC, employed prefabricated timber sections brought to the site rather than assembled on-site.[citation needed]
Sinhalese kings of ancient Sri Lanka have used prefabricated buildings technology to erect giant structures, which dates back as far as 2000 years, where some sections were prepared separately and then fitted together, specially in the Kingdom of Anuradhapura and Kingdom of Polonnaruwa
In 19th century Australia a large number of prefabricated houses were imported from the United Kingdom.
The method was widely used in the construction of prefabricated housing in the 20th century, such as in the United Kingdom to replace houses bombed during World War II. Assembling sections in factories saved time on-site and reduced cost. However the quality was low, and when such prefabricated housing was left in use for longer than its designed life, it acquired a certain stigma.[citation needed].
The Crystal Palace, erected in London in 1851, was a highly visible example of iron and glass prefabricated construction; it was followed on a smaller scale by Oxford Rewley Road railway station.
Current uses
The most widely used form of prefabrication in building and civil engineering is the use of prefabricated concrete and prefabricated steel sections in structures where a particular part or form is repeated many times. It can be difficult to construct the formwork required to mould concrete components on site, and delivering wet concrete to the site before it starts to set requires precise time management. Pouring concrete sections in a factory brings the advantages of being able to re-use moulds and the concrete can be mixed on the spot without having to be transported to and pumped wet on a congested construction site. Prefabricating steel sections reduces on-site cutting and welding costs as well as the associated hazards.
Prefabrication techniques are used in the construction of apartment blocks, and housing developments with repeated housing units. The quality of prefabricated housing units had increased to the point that they may not be distinguishable from traditionally built units to those that live in them. The technique is also used in office blocks, warehouses and factory buildings. Prefabricated steel and glass sections are widely used for the exterior of large buildings.
Detached houses, cottages, log cabin, saunas, etc. are also sold with prefabricated elements. Prefabrication of modular wall elements allows building of complex thermal insulation, window frame components, etc. on an assembly line, which tends to improve quality over on-site construction of each individual wall or frame. Wood construction in particular benefits from the improved quality. However, tradition often favors building by hand in many countries, and the image of prefab as a "cheap" method only slows its adoption. However, current practice already allows the modifying the floor plan according to the customer's requirements and selecting the surfacing material, e.g. a personalized brick facade can be masoned even if the load-supporting elements are timber.
Prefabrication saves engineering time on the construction site in civil engineering projects. This can be vital to the success of projects such as bridges and avalanche galleries, where weather conditions may only allow brief periods of construction. Prefabricated bridge elements and systems offer bridge designers and contractors significant advantages in terms of construction time, safety, environmental impact, constructibility, and cost. Prefabrication can also help minimize the impact on traffic from bridge building. Additionally, small, commonly used structures such as concrete pylons are in most cases prefabricated.
Radio towers for mobile phone and other services often consist of multiple prefabricated sections. Modern lattice towers and guyed masts are also commonly assembled of prefabricated elements.
Prefabrication has become widely used in the assembly of aircraft and spacecraft, with components such as wings and fuselage sections often being manufactured in different countries or states from the final assembly site. However this is sometimes for political rather than commercial reasons - e.g. Airbus
Advantages of prefabrication
- High capacity- enabling the realization of important projects
- Factory made products
- Shorter construction time- less than half of conventional cast in situ construction
- Independent of adverse weather conditions during construction
- Continuing erection in winter time until -20 °C
- Quality surveillance system
- Opportunities for good architecture
- Healthy buildings
- Reduced energy consumption
- Environmentally friendly way of building with optimum use of materials, recycling of waste products, less noise and dust etc.
- Cost effective solutions
- Reduction in construction time
- Safety in construction
- Increase in the quality of construction.
- Reduction of construction waste
Disadvantages
- Leaks can form at joints in prefabricated components.
- Transportation costs may be higher for voluminous prefabricated sections than for the materials of which they are made, which can often be packed more efficiently.
- Large prefabricated sections require heavy-duty cranes and precision measurement and handling to place in position.
- Larger groups of buildings from the same type of prefabricated elements tend to look drab and monotonous.
- Local jobs may be lost, if the work done to fabricate the components being located in a place far away from the place of construction. This means that there are less locals working on any construction project at any time, because fabrication is outsourced.
Off-site fabrication
Off-Site fabrication is a process that incorporates prefabrication and pre-assembly. The process involves the design and manufacture of units or modules, usually remote from the work site, and the installation at the site to form the permanent works at the site. In its fullest sense, off-site fabrication requires a project strategy that will change the orientation of the project process from construction to manufacture to installation. Examples of off-site fabrication are wall panels for homes, wooden truss bridge spans, airport control stations.
References
- ↑ "Prefabricated Building Construction Systems Adopted in Hong Kong". Retrieved 20 August 2013.
See also
Wikimedia Commons has media related to Prefabrication. |
- Prefabricated home
- Prefabricated buildings
- Concrete and concrete perpend
- Panelák
- Tower block
- Concrete pylon
- St Crispin's School — an example of a prefabricated school building
- Nonsuch House, first prefabricated building
External links
- Learn about green prefab home designs
- Modern Built Environment Knowledge Transfer Network
- Build Offsite
- http://www.fhwa.dot.gov/bridge/prefab/advantag.cfm