Power residue symbol

From Wikipedia, the free encyclopedia

In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higher[1] reciprocity laws.[2]

Background and notation

Let k be an algebraic number field with ring of integers   {\mathcal  {O}}_{k}  that contains a primitive n-th root of unity   \zeta _{n}\in {\mathcal  {O}}_{k}.

Let   {\mathfrak  {p}}\subset {\mathcal  {O}}_{k}   be a prime ideal and assume that n and {\mathfrak  {p}} are coprime (i.e. n\not \in {\mathfrak  {p}}.)

The norm of  {\mathfrak  {p}}  is defined as the cardinality of the residue class ring   {\mathcal  {O}}_{k}/{\mathfrak  {p}}\;:\;\;\;{\mathrm  {N}}{\mathfrak  {p}}=|{\mathcal  {O}}_{k}/{\mathfrak  {p}}|.   (since {\mathfrak  {p}} is prime this is a finite field)

There is an analogue of Fermat's theorem in   {\mathcal  {O}}_{k}:  If   \alpha \in {\mathcal  {O}}_{k},\;\;\;\alpha \not \in {\mathfrak  {p}},   then

\alpha ^{{{\mathrm  {N}}{\mathfrak  {p}}-1}}\equiv 1{\pmod  {{\mathfrak  {p}}}}.

And finally,   {\mathrm  {N}}{\mathfrak  {p}}\equiv 1{\pmod  {n}}.   These facts imply that

\alpha ^{{{\frac  {{\mathrm  {N}}{\mathfrak  {p}}-1}{n}}}}\equiv \zeta _{n}^{s}{\pmod  {{\mathfrak  {p}}}}   is well-defined and congruent to a unique n-th root of unity ζns.

Definition

This root of unity is called the n-th power residue symbol for   {\mathcal  {O}}_{k},   and is denoted by

\left({\frac  {\alpha }{{\mathfrak  {p}}}}\right)_{n}=\zeta _{n}^{s}\equiv \alpha ^{{{\frac  {{\mathrm  {N}}{\mathfrak  {p}}-1}{n}}}}{\pmod  {{\mathfrak  {p}}}}.

Properties

The n-th power symbol has properties completely analogous to those of the classical (quadratic) Legendre symbol:

\left({\frac  {\alpha }{{\mathfrak  {p}}}}\right)_{n}={\begin{cases}0&{\mbox{ if }}\alpha \in {\mathfrak  {p}}\\1&{\mbox{ if }}\alpha \not \in {\mathfrak  {p}}{\mbox{ and there is an }}\eta \in {\mathcal  {O}}_{k}{\mbox{ such that }}\alpha \equiv \eta ^{n}{\pmod  {{\mathfrak  {p}}}}\\\zeta {\mbox{ where }}\zeta ^{n}=1{\mbox{ and }}\zeta \neq 1&{\mbox{ if }}\alpha \not \in {\mathfrak  {p}}{\mbox{ and there is no such }}\eta \end{cases}}

In all cases (zero and nonzero)

\left({\frac  {\alpha }{{\mathfrak  {p}}}}\right)_{n}\equiv \alpha ^{{{\frac  {{\mathrm  {N}}{\mathfrak  {p}}-1}{n}}}}{\pmod  {{\mathfrak  {p}}}}.
\left({\frac  {\alpha }{{\mathfrak  {p}}}}\right)_{n}\left({\frac  {\beta }{{\mathfrak  {p}}}}\right)_{n}=\left({\frac  {\alpha \beta }{{\mathfrak  {p}}}}\right)_{n}
{\mbox{if }}\alpha \equiv \beta {\pmod  {{\mathfrak  {p}}}}{\mbox{ then }}\left({\frac  {\alpha }{{\mathfrak  {p}}}}\right)_{n}=\left({\frac  {\beta }{{\mathfrak  {p}}}}\right)_{n}

Relation to the Hilbert symbol

The n-th power residue symbol is related to the Hilbert symbol (\cdot ,\cdot )_{{{\mathfrak  {p}}}} for the prime {\mathfrak  {p}} by

\left({\frac  {\alpha }{{\mathfrak  {p}}}}\right)_{n}=\left({\pi ,\alpha }\right)_{{{\mathfrak  {p}}}}

in the case {\mathfrak  {p}} coprime to n, where \pi is any uniformising element for the local field K_{{{\mathfrak  {p}}}}.[3]

Generalizations

The n-th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.

Any ideal {\mathfrak  {a}}\subset {\mathcal  {O}}_{k} is the product of prime ideals, and in one way only:

{\mathfrak  {a}}={\mathfrak  {p}}_{1}{\mathfrak  {p}}_{2}\dots {\mathfrak  {p}}_{g}.

The n-th power symbol is extended multiplicatively:

{\bigg (}{\frac  {\alpha }{{\mathfrak  {a}}}}{\bigg )}_{n}=\left({\frac  {\alpha }{{\mathfrak  {p}}_{1}}}\right)_{n}\left({\frac  {\alpha }{{\mathfrak  {p}}_{2}}}\right)_{n}\dots \left({\frac  {\alpha }{{\mathfrak  {p}}_{g}}}\right)_{n}.

If \beta \in {\mathcal  {O}}_{k} is not zero the symbol \left({\frac  {\alpha }{\beta }}\right)_{n} is defined as

\left({\frac  {\alpha }{\beta }}\right)_{n}=\left({\frac  {\alpha }{(\beta )}}\right)_{n}, where (\beta ) is the principal ideal generated by \beta .

The properties of this symbol are analogous to those of the quadratic Jacobi symbol:

{\mbox{If }}\alpha \equiv \beta {\pmod  {{\mathfrak  {a}}}}{\mbox{ then }}{\bigg (}{\frac  {\alpha }{{\mathfrak  {a}}}}{\bigg )}_{n}=\left({\frac  {\beta }{{\mathfrak  {a}}}}\right)_{n}.
{\bigg (}{\frac  {\alpha }{{\mathfrak  {a}}}}{\bigg )}_{n}\left({\frac  {\beta }{{\mathfrak  {a}}}}\right)_{n}=\left({\frac  {\alpha \beta }{{\mathfrak  {a}}}}\right)_{n}.
\left({\frac  {\alpha }{{\mathfrak  {a}}}}\right)_{n}\left({\frac  {\alpha }{{\mathfrak  {b}}}}\right)_{n}=\left({\frac  {\alpha }{{\mathfrak  {ab}}}}\right)_{n}.
{\mbox{If }}\alpha \equiv \eta ^{n}{\pmod  {{\mathfrak  {a}}}}{\mbox{ then }}\left({\frac  {\alpha }{{\mathfrak  {a}}}}\right)_{n}=1.
{\mbox{If }}\left({\frac  {\alpha }{{\mathfrak  {a}}}}\right)_{n}\neq 1{\mbox{ then }}\alpha {\mbox{ is not an }}n{\mbox{-th power}}{\pmod  {{\mathfrak  {a}}}}.
{\mbox{If }}\left({\frac  {\alpha }{{\mathfrak  {a}}}}\right)_{n}=1{\mbox{ then }}\alpha {\mbox{ may or may not be an }}n{\mbox{-th power}}{\pmod  {{\mathfrak  {a}}}}.

Power reciprocity law

The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols as[4]

\left({{\frac  {\alpha }{\beta }}}\right)_{n}\left({{\frac  {\beta }{\alpha }}}\right)_{n}=\prod _{{{\mathfrak  {p}}|n\infty }}(\alpha ,\beta )_{{{\mathfrak  {p}}}}\ .

See also

Notes

  1. Quadratic reciprocity deals with squares; higher refers to cubes, fourth, and higher powers.
  2. All the facts in this article are in Lemmermeyer Ch. 4.1 and Ireland & Rosen Ch. 14.2
  3. Neukirch (1999) p. 336
  4. Neukirch (1999) p. 415

References

  • Gras, Georges (2003), Class field theory. From theory to practice, Springer Monographs in Mathematics, Berlin: Springer-Verlag, pp. 204–207, ISBN 3-540-44133-6, Zbl 1019.11032 
  • Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (Second edition), New York: Springer Science+Business Media, ISBN 0-387-97329-X 


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.