Polynomial lemniscate

From Wikipedia, the free encyclopedia
|z^{6}+z^{5}+z^{4}+z^{3}+ z^{2}+z+1|=1

In mathematics, a polynomial lemniscate or polynomial level curve is a plane algebraic curve of degree 2n, constructed from a polynomial p with complex coefficients of degree n.

For any such polynomial p and positive real number c, we may define a set of complex numbers by |p(z)|=c. This set of numbers may be equated to points in the real Cartesian plane, leading to an algebraic curve ƒ(x, y) = c2 of degree 2n, which results from expanding out p(z){\bar  p}({\bar  z}) in terms of z = x + iy.

When p is a polynomial of degree 1 then the resulting curve is simply a circle whose center is the zero of p. When p is a polynomial of degree 2 then the curve is a Cassini oval.

Erdős lemniscate

Erdős lemniscate of degree ten and genus six

A conjecture of Erdős which has attracted considerable interest concerns the maximum length of a polynomial lemniscate ƒ(x, y) = 1 of degree 2n when p is monic, which Erdős conjectured was attained when p(z) = zn  1. This is still not proved but Fryntov and Nazarov proved that p gives a local maximum.[1] In the case when n = 2, the Erdős lemniscate is the Lemniscate of Bernoulli

(x^{2}+y^{2})^{2}=2(x^{2}-y^{2})\,

and it has been proven that this is indeed the maximal length in degree four. The Erdős lemniscate has three ordinary n-fold points, one of which is at the origin, and a genus of (n  1)(n  2)/2. By inverting the Erdős lemniscate in the unit circle, one obtains a nonsingular curve of degree n.

Generic polynomial lemniscate

In general, a polynomial lemniscate will not touch at the origin, and will have only two ordinary n-fold singularities, and hence a genus of (n  1)2. As a real curve, it can have a number of disconnected components. Hence, it will not look like a lemniscate, making the name something of a misnomer.

Mandelbrot curve M2 of degree eight and genus nine

An interesting example of such polynomial lemniscates are the Mandelbrot curves. If we set p0 = z, and pn = pn12 + z, then the corresponding polynomial lemniscates Mn defined by |pn(z)| = 1 converge to the boundary of the Mandelbrot set. The Mandelbrot curves are of degree 2n+1.[2]

Notes

  1. Fryntov, A; Nazarov, F (2008). "New estimates for the length of the Erdos-Herzog-Piranian lemniscate". Linear and Complex Analysis 226: 49–60. 
  2. Ivancevic, Vladimir G.; Ivancevic, Tijana T. (2007), High-Dimensional Chaotic and Attractor Systems: A Comprehensive Introduction, Springer, p. 492, ISBN 9781402054563 .

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.