Polynomial (hyperelastic model)

From Wikipedia, the free encyclopedia

The polynomial hyperelastic material model [1] is a phenomenological model of rubber elasticity. In this model, the strain energy density function is of the form of a polynomial in the two invariants I_{1},I_{2} of the left Cauchy-Green deformation tensor.

The strain energy density function for the polynomial model is [1]

W=\sum _{{i,j=0}}^{n}C_{{ij}}(I_{1}-3)^{i}(I_{2}-3)^{j}

where C_{{ij}} are material constants and C_{{00}}=0.

For compressible materials, a dependence of volume is added

W=\sum _{{i,j=0}}^{n}C_{{ij}}({\bar  {I}}_{1}-3)^{i}({\bar  {I}}_{2}-3)^{j}+\sum _{{k=1}}^{m}D_{{k}}(J-1)^{{2k}}

where

{\begin{aligned}{\bar  {I}}_{1}&=J^{{-2/3}}~I_{1}~;~~I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}~;~~J=\det({\boldsymbol  {F}})\\{\bar  {I}}_{2}&=J^{{-4/3}}~I_{2}~;~~I_{2}=\lambda _{1}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}+\lambda _{3}^{2}\lambda _{1}^{2}\end{aligned}}

In the limit where C_{{01}}=C{11}=0, the polynomial model reduces to the Neo-Hookean solid model. For a compressible Mooney-Rivlin material n=1,C_{{01}}=C_{2},C_{{11}}=0,C_{{10}}=C_{1},m=1 and we have

W=C_{{01}}~({\bar  {I}}_{2}-3)+C_{{10}}~({\bar  {I}}_{1}-3)+D_{1}~(J-1)^{2}

References

  1. ↑ 1.0 1.1 Rivlin, R. S. and Saunders, D. W., 1951, Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phi. Trans. Royal Soc. London Series A, 243(865), pp. 251-288.

See also

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.