Polymer concrete
Polymer concrete is part of group of concretes that use polymers to supplement or replace cement as a binder. The types include polymer-impregnated concrete, polymer concrete, and polymer-Portland-cement concrete. Polymers in concrete have been overseen by Committee 548 of the American Concrete Institute since 1971.[citation needed]
Composition
In polymer concrete, thermosetting resins are used as the principal polymer component due to their high thermal stability and resistance to a wide variety of chemicals. Polymer concrete is also composed of aggregates that include silica, quartz, granite, limestone, and other high quality material. The aggregate must be of good quality, free of dust and other debris, and dry. Failure to fulfill these criteria can reduce the bond strength between the polymer binder and the aggregate.
Uses
Polymer concrete may be used for new construction or repairing of old concrete. The adhesive properties of polymer concrete allow patching of both polymer and conventional cement-based concretes. The low permeability and corrosive resistance of polymer concrete allows it to be used in swimming pools, sewer structure applications, drainage channels, electrolytic cells for base metal recovery, and other structures that contain liquids or corrosive chemicals. It is especially suited to the construction and rehabilitation of manholes due to their ability to withstand toxic and corrosive sewer gases and bacteria commonly found in sewer systems. Unlike traditional concrete structures, polymer concrete requires no coating or welding of PVC-protected seams.[1] It can also be used as a replacement for asphalt pavement, for higher durability and higher strength.
Polymer concrete has historically not been widely adopted due to the high costs and difficulty associated with traditional manufacturing techniques. However, recent progress has led to significant reductions in cost, meaning that the use of polymer concrete is gradually becoming more widespread.[1]
Advantages
Advantages of polymer concrete include:
- Rapid curing at ambient temperatures
- High tensile, flexural, and compressive strengths
- Good adhesion to most surfaces
- Good long-term durability with respect to freeze and thaw cycles
- Low permeability to water and aggressive solutions
- Good chemical resistance
- Good resistance against corrosion
- Lighter weight (only somewhat less dense than traditional concrete, depending on the resin content of the mix)
- May be vibrated to fill voids in forms
- Allows use of regular form-release agents (in some applications)
- Dielectric
Disadvantages
Product hard to manipulate with conventional tools such as drills and presses due to its strength and density. Recommend getting pre-modified product from the manufacturer
Small boxes are more costly when compared to its precast counterpart however pre cast concretes induction of stacking or steel covers quickly bridge the gap.
Specifications
Following are some specification examples of the features of polymer concrete:
Density kg/m3 | Compressive strength MPa |
---|---|
2260 [2] | 37 [3] |
References
- ↑ 1.0 1.1 http://genevapolymerproducts.com
- ↑ Design and manufacture of hybrid polymer concrete bed for high-speed CNC milling machine Jung Do Suh Æ Dai Gil Lee
- ↑ The compressive strength of a new ureaformaldehyde-based polymer concrete A. A. Alzaydi, S. A. Shihata1 and T. Alp (in table Properties of polymer concrete)