Plywood

From Wikipedia, the free encyclopedia
Softwood plywood made from spruce

Plywood is a manufactured wood panel from the family of manufactured boards (such as medium-density fibreboard (MDF), particle board (chipboard), etc.) made from thin sheets of wood veneer. Plywood layers (called veneers or plies) are glued together, with adjacent plies having their wood grain rotated relative to adjacent layers up to 90 degrees.

All plywoods bind resin and wood fiber sheets (cellulose cells are long, strong and thin) to form a composite material. This alternation of the grain is called cross-graining and has several important benefits: it reduces the tendency of wood to split when nailed at the edges; it reduces expansion and shrinkage, providing improved dimensional stability; and it makes the strength of the panel consistent across all directions. There is usually an odd number of plies, so that the sheet is balanced—this reduces warping. Because plywood is bonded with grains running against one another and with an odd number of composite parts, it is very hard to bend it perpendicular to the grain direction of the surface ply.

Smaller thinner plywoods and lower quality plywoods (see Average-quality plywood photo below and right) may only have their plies (layers) arranged at right angles to each other, though many better quality plywood products will by design have five plies in steps of 45 degrees (0, 45, 90, 135, and 180 degrees), giving strength in multiple axes. The highest quality specialty plywoods often have plies at 30 degrees (0, 30, 60, 90, 120, 150, and 180 degrees) in seven layers, or have nine layers with two layers of 45 and 135 degrees in the sandwich. The smaller the step rotations the harder it is to manufacture, increasing manufacturing costs and consequently retail price.

History

In 1797 the Englishman Sir Samuel Bentham applied for patents covering several machines to produce veneers. In his patent applications, he described the concept of laminating several layers of veneer with glue to form a thicker piece – the first description of what we now call plywood.[1] Samuel Bentham was a British naval engineer with many shipbuilding inventions to his credit. Veneers at the time of Bentham were flat sawn, rift sawn or quarter sawn; i.e. cut along or across the log manually in different angles to the grain and thus limited in width and length.

About fifty years later Immanuel Nobel, father of Alfred Nobel, realized that several thinner layers of wood bonded together would be stronger than one single thick layer of wood [citation needed]; understanding the industrial potential of laminated wood he invented the rotary lathe. [citation needed]

There is little record of the early implementation of the rotary lathe and the subsequent commercialization of plywood as we know it today, but in its 1870 edition, the French dictionary Robert describes the process of rotary lathe veneer manufacturing in its entry Déroulage.[2] One can thus presume that rotary lathe plywood manufacture was an established process in France in the 1860s. Plywood was introduced into the United States in 1865[3] and industrial production started shortly after. In 1928, the first standard-sized 4 ft by 8 ft (1.2 m by 2.4 m) plywood sheets were introduced in the United States for use as a general building material.[4]

As for artists’ use of plywood as support for easel paintings, replacing traditional canvas or cardboard; a recent JSTOR article has brought to light that ready-made artist boards for oil painting in three-layered plywood (3-ply) were produced and sold in New York as early as 1880.[5] It is evident that there was an application precedent going back several years. When considering the advantage of simply cutting raw board to wanted measure, one might safely assume that the progressive phalanges among late 19th century French artists embraced this new support for their paintings from the very beginning of the national manufacture (1860’s).

Structural characteristics

A typical plywood panel has face veneers of a higher grade than the core veneers. The principal function of the core layers is to increase the separation between the outer layers where the bending stresses are highest, thus increasing the panel's resistance to bending. As a result, thicker panels can span greater distances under the same loads. In bending, the maximum stress occurs in the outermost layers, one in tension, the other in compression. Bending stress decreases from the maximum at the face layers to nearly zero at the central layer. Shear stress, by contrast, is higher in the center of the panel, and zero at the outer fibers.

Types

Average-quality plywood with 'show veneer'
High-quality concrete pouring plate in plywood
Birch plywood

Different varieties of plywood exist for different applications:

Softwood plywood

Softwood panel is usually made either of cedar, Douglas fir or spruce, pine, and fir (collectively known as spruce-pine-fir or SPF) or redwood and is typically used for construction and industrial purposes.[6]

The most common dimension is 1.2m × 2.4m or the slightly larger imperial dimension of 4 feet × 8 feet. Plies vary in thickness from 1.4 mm to 4.3 mm. The number of plies depends on the thickness and grade of the sheet but at least three are required as the minimum odd number of plies. Roofing can use the thinner 5/8" (15 mm) plywood. Subfloors are at least 3/4" (18 mm) thick, the thickness depending on the distance between floor joists. Plywood for flooring applications is often tongue and groove; This prevents one board from moving up or down relative to its neighbor, so providing a solid feeling floor when the joints do not lie over joists. T&G plywood is usually found in the 1/2" to 1" (12–25 mm) range

Hardwood plywood

Used for demanding end uses. Birch plywood is characterized by its excellent strength, stiffness and resistance to creep. It has a high planar shear strength and impact resistance, which make it especially suitable for heavy-duty floor and wall structures. Oriented plywood construction has a high wheel-carrying capacity. Birch plywood has excellent surface hardness, and damage- and wear-resistance.[7]

Tropical plywood

Tropical plywood is made of mixed species of tropical wood. Originally from the Asian region, it is now also manufactured in African and South American countries. Tropical plywood is superior to softwood plywood due to its density, strength, evenness of layers, and high quality. It is usually sold at a premium in many markets if manufactured with high standards. Tropical plywood is widely used in the UK, Japan, United States, Taiwan, Korea, Dubai, and other countries worldwide. It is the preferred choice for construction purposes in many regions due to its low cost. However, many countries’ forests have been over-harvested, including the Philippines, Malaysia and Indonesia, largely due to the demand for plywood production and export.

Special-purpose plywood

Certain plywoods do not have alternating plies. These are designed for specific purposes.

Aircraft plywood

High-strength plywood also known as aircraft plywood, is made from mahogany and/or birch, and uses adhesives with increased resistance to heat and humidity. It was used for several World War II fighter aircraft. Although the British-built Mosquito bomber, nicknamed "The Wooden Wonder", was constructed of a plywood monocoque, this was formed in moulds from individual veneers of birch, balsa and birch[citation needed], rather than machined from pre-laminated plywood sheets.

Structural aircraft-grade plywood is more commonly manufactured from African mahogany or American birch veneers that are bonded together in a hot press over hardwood cores of basswood or poplar. Basswood is another type of aviation-grade plywood that is lighter and more flexible than mahogany and birch plywood but has slightly less[citation needed] structural strength. All aviation-grade plywood is manufactured to specifications outlined in MIL-P-607, which calls for shear testing after immersion in boiling water for three hours to verify the adhesive qualities between the plies and meets specifications.

Decorative plywood (overlaid plywood)

Usually faced with hardwood, including ash, oak, red oak, birch, maple, mahogany, Philippine mahogany (often called lauan, luan or meranti and having no relation to true mahogany), rose wood, teak and a large number of other hardwoods. However, Formica, metal and resin-impregnated paper or fabric bonded are also added on top of plywood at both side as a kind of ready for use in the decoration field. This plywood is a lot easier to dye and draw on than any other plywoods.

Flexible plywood

Flexible plywood is very flexible and is designed for making curved parts. In the UK this is sometimes known as "Hatters Ply" as it was used to make stovepipe hats in Victorian times [citation needed]. It is also often referred to as "Bendy Ply" due to its flexibility. However these may not be termed plywood in some countries because the basic description of plywood is layers of veneered wood laid on top of each other with the grain of each layer perpendicular to the grain of the next. In the U.S., the terms "Bender Board" and "Wiggle Board" are commonly used.

Marine plywood

Marine plywood is manufactured from durable face and core veneers, with few defects so it performs longer in humid and wet conditions and resists delaminating and fungal attack. Its construction is such that it can be used in environments where it is exposed to moisture for long periods. More recently, tropical producers have become dominant in the marine plywood market. Okoumé from Gabon is now the accepted standard for marine plywood, even though the wood is not very resistant to rot and decay. Each wood veneer will be from tropical hardwoods, have negligible core gap, limiting the chance of trapping water in the plywood and hence providing a solid and stable glue bond. It uses an exterior Water and Boil Proof (WBP) glue similar to most exterior plywoods.

Marine plywood can be graded as being compliant with BS 1088, which is a British Standard for marine plywood. There are few international standards for grading marine plywood and most of the standards are voluntary. Some marine plywood has a Lloyd's of London stamp that certifies it to be BS 1088 compliant. Some plywood is also labeled based on the wood used to manufacture it. Examples of this are Okoumé or Meranti.

Marine plywood is frequently used in the construction of docks and boats. It is much more expensive than standard plywood: the cost for a typical 4-foot by 8-foot 1/2-inch thick board is roughly $75 to $100 U.S. or around $2.5 per square foot, which is about three times as expensive as standard plywood.

Other plywoods

Other types of plywoods include fire-retardant, moisture-resistant, sign-grade and pressure-treated. However, the plywood may be treated with various chemicals to improve the plywood's fireproofing. Each of these products is designed to fill a need in industry.

Production

Plywood production requires a good log, called a peeler, which is generally straighter and larger in diameter than one required for processing into dimensioned lumber by a sawmill. The log is laid horizontally and rotated about its long axis while a long blade is pressed into it, causing a thin layer of wood to peel off (much as a continuous sheet of paper from a roll). An adjustable nosebar, which may be solid or a roller, is pressed against the log during rotation, to create a "gap" for veneer to pass through between the knife and the nosebar. The nosebar partly compresses the wood as it is peeled; it controls vibration of the peeling knife; and assists in keeping the veneer being peeled to an accurate thickness. In this way the log is peeled into sheets of veneer, which are then cut to the desired oversize dimensions, to allow it to shrink (depending on wood species) when dried. The sheets are then patched, graded, glued together and then baked in a press at a temperature of at least 140 °C (284 °F), and at a pressure of up to 1.9 MPa (280 psi) (but more commonly 200 psi) to form the plywood panel. The panel can then be patched, have minor surface defects such as splits or small knot holes filled, re-sized, sanded or otherwise refinished, depending on the market for which it is intended.

Plywood for indoor use generally uses the less expensive urea-formaldehyde glue, which has limited water resistance, while outdoor and marine-grade plywood are designed to withstand rot, and use a water resistant phenol-formaldehyde glue to prevent delamination and to retain strength in high humidity.

The adhesives used in plywood have become a point of concern. Both urea formaldehyde and phenol formaldehyde are carcinogenic in very high concentrations. As a result, many manufacturers are turning to low formaldehyde-emitting glue systems, denoted by an "E" rating ("E0" possessing the lowest formaldehyde emissions). Plywood produced to "E0" has effectively zero formaldehyde emissions.[8]

In addition to the glues being brought to the forefront, the wood resources themselves are becoming the focus of manufacturers, due in part to energy conservation, as well as concern for natural resources. There are several certifications available to manufacturers who participate in these programs. Forest Stewardship Council (FSC), Leadership in Energy and Environmental Design (LEED), Sustainable Forestry Initiative (SFI), and Greenguard are all certification programs that ensure that production and construction practices are sustainable. Many of these programs offer tax benefits to both the manufacturer and the end user.[9]

Sizes

The most commonly used thickness range is from 0.14 to 3.0 in (0.36 to 7.62 cm). The sizes of the most commonly used plywood sheets are 4 by 8 ft (1.2 by 2.4 m). Width and length may vary in 1 ft (30 cm) increments.

In the United States, the most commonly used size is 4 ft by 8 ft or 5 ft by 5 ft.[10]

Sizes on specialised plywood for concrete forming range from 6 to 21 mm, and a multitude of formats exist, though 15x750x1500mm is very commonly used.

Grades

Grading rules differ according to the country of origin. Most popular standard is the British Standard (BS) and American Standard (ASTM). Joyce (1970), however, list some general indication of grading rules:[11]

Grade Description
A Face and back veneers practically free from all defects.
A/B Face veneers practically free from all defects. Reverse veneers with only a few small knots or discolorations.
A/BB Face as A but reverse side permitting jointed veneers, large knots, plugs, etc.
B Both side veneers with only a few small knots or discolorations.
B/BB Face veneers with only a few small knots or discolorations. Reverse side permitting jointed veneers, large knots, plugs, etc.
BB Both sides permitting jointed veneers, large knots, plugs, etc.
WG Guaranteed well glued only. All broken knots plugged.
X Knots, knotholes, cracks, and all other defects permitted.

JPIC Standards

Grade Description
BB/CC Face as BB, back as CC. BB as very little knots of less than 1/4 inches, slight discoloration, no decay, split and wormholes mended skillfully, matched colors, no blister, no wrinkle. Most popular choice for most applications.

Applications

Plywood is used in many applications that need high-quality, high-strength sheet material. Quality in this context means resistance to cracking, breaking, shrinkage, twisting and warping.

Exterior glued plywood is suitable for outdoor use, but because moisture affects the strength of wood, optimal performance is achieved in end uses where the wood's moisture content remains relatively low. On the other hand, subzero conditions don't affect plywood's dimensional or strength properties, which makes some special applications possible.

Plywood is also used as an engineering material for stressed-skin applications. It has been used for marine and aviation applications since WWII. Most notable is the British de Havilland Mosquito bomber, which was primarily made using a moulded sandwich of two layers of birch plywood around a balsa core. Plywood was also used for the hulls in the hard-chine Motor Torpedo Boats (MTB) and Motor Gun Boats (MGB) built by the British Power Boat Company and Vosper's. Plywood is currently successfully used in stressed-skin applications.[citation needed]. The American designers Charles and Ray Eames are famous for their plywood-based furniture, as is Finnish Architect Alvar Aalto and his firm Artek, while Phil Bolger is famous for designing a wide range of boats built primarily of plywood.

Plywood is often used to create curved surfaces because it can easily bend with the grain. Skateboard ramps often utilize plywood as the top smooth surface over bent curves to create transition that can simulate the shapes of ocean waves.

Softwood plywood applications

Typical end uses of spruce plywood are:

  • Floors, walls and roofs in house constructions
  • Wind bracing panels
  • Vehicle internal body work
  • Packages and boxes
  • Fencing

There are coating solutions available that mask the prominent grain structure of spruce plywood. For these coated plywoods there are some end uses where reasonable strength is needed but the lightness of spruce is a benefit e.g.:

  • Concrete shuttering panels
  • Ready-to-paint surfaces for constructions

Hardwood (Birch) plywood applications

Phenolic-film coated birch plywood is typically used as a ready-to-install component e.g.:

  • Panels in concrete form work systems
  • Floors, walls and roofs in transport vehicles
  • Container floors
  • Floors subjected to heavy wear in various buildings and factories
  • Scaffolding materials
("Wire" or other styles of imprinting available for better traction)

Birch plywood is used as a structural material in special applications e.g.:

Smooth surface and accurate thickness combined with the durability of the material makes birch plywood a favorable material for many special end uses e.g.:

  • High-end loud speakers
  • Die-cutting boards
  • Supporting structure for parquet
  • Playground equipment
  • Furniture
  • Signs and fences for demanding outdoor advertising
  • Musical instruments
  • Sports equipment

Tropical plywood applications

Tropical plywood is widely available from the South-East Asia region, mainly from Malaysia and Indonesia. Tropical plywood boasts premium quality, and strength. Depending on machinery, tropical plywood can be made with high accuracy in thickness, and is a highly preferable choice in America, Japan, Middle East, Korea, and other regions around the world.

  • Common plywood
  • Concrete panel
  • Floor base
  • Structure panel
  • Container flooring
  • Lamin board
  • Laminated veneer lumber (LVL)

See also

References

  1. "Plywood". Gale's How Products are Made. The Gale Group Inc.  Unknown parameter |access-date= ignored (|accessdate= suggested) (help)
  2. "Dérouler". Le Robert historique de la langue française. Dictionnaires Robert. Retrieved 26 November 2013. 
  3. "Plywood". Columbia Encyclopedia. Retrieved 26 November 2013. 
  4. "Plywood". Gale's How Products are Made. The Gale Group Inc. Retrieved 26 November 2013. 
  5. Muller, Norman E. "An early example of a plywood support for painting". Journal of the American Institute for Conservation. American Institute for Conservation of Historic and Artistic Works. Retrieved 26 November 2013. 
  6. O'Halloran, p. 221.
  7. Handbook of Finnish plywood, Finnish Forest Industries Federation, 2002, ISBN 952-9506-63-5
  8. Engineered Wood Products Association of Australasia. (PDF). Retrieved on 2012-02-10.
  9. Pro Woodworking Tips.com. Pro Woodworking Tips.com. Retrieved on 2012-02-10.
  10. Metric conversions, Canadian government publication. (PDF). Retrieved on 2012-02-10.
  11. Joyce, Ernes. 1970. The Technique of Furniture Making. London: B. T. Batsford Limited.

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.