Pikromycin
Pikromycin | |
---|---|
IUPAC name (3R,5R,6S,7S,9R,11E,13S,14R)-14-ethyl-13-hydroxy-3,5,7,9,13-pentamethyl-2,4,10-trioxooxacyclotetradec-11-en-6-yl 3,4,6-trideoxy-3-(dimethylamino)-β-D-xylo-hexopyranoside | |
Other names Picromycin | |
Identifiers | |
CAS number | 19721-56-3 |
PubChem | 5282037 |
ChemSpider | 4445267 |
ChEBI | CHEBI:29665 |
Jmol-3D images | {{#if:O=C2[C@@H]([C@@H](O[C@@H]1O[C@@H](C[C@H](N(C)C)[C@H]1O)C)[C@@H](C)C[C@H](C(=O)/C=C/[C@@](O)(C)[C@H](OC(=O)[C@@H]2C)CC)C)C|Image 1 |
| |
| |
Properties | |
Molecular formula | C28H47NO8 |
Molar mass | 525.67 g mol−1 |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
Infobox references | |
Pikromycin was studied by Brokmann and Hekel in 1951 and was the first antibiotic macrolide to be isolated.[1] Pikromycin is synthesized through a type I polyketide synthase system in Streptomyces venezuelae, a species of Gram-positive bacterium in the Streptomyces genus. [2] Pikromycin is derived from narbonolide, a 14-membered ring macrolide. [3] Along with the narbonolide backbone, pikromycin includes a desosamine sugar and a hydroxyl group. Although Pikromycin is not a clinically useful antibiotic, it can be used as a raw material to synthesize antibiotic ketolide compounds such as ertythromycins and new epothilones. [4]
Biosynthesis
The pikromycin polyketide synthase of Streptomyces venezuelae contains four polypeptides: PikAI, PikAII, PikAIII, and PikAIV. These polypeptides contain a loading module, six extension molecules, and a thioesterase domain that that terminated the biosynthetic procedure. [5] In Figure 1, each circle corresponds to a PKS mutilifuctional protein, where ACP is acyl carrier protein, KS is keto-ACP synthase, KSQ is a keto-ACP synthase like domain, AT is acyltransferase, KR is keto ACP reductase, KR with cross is inactive KR, DH is hydroxyl-thioester dehydratase, ER is enoyl reductase, TEI is thioesterase domain I, TEII is type II thioesterase. [6] Des corresponds to the enzymes utilized in desosamine biosynthesis and transfer, which include DesI-DesVIII.
Figure 2 represents the desosamine deoxyamino sugar biosynthetic pathway. DesI-DesVI (des locus of pikromycin PKS) encodes all the enzymes needed to obtain TDP-desoamine from TDP-glucose. DesVII and DesVIII activities transfer desoamine to narbonolide and narbomycin is obtained. PikC cytochrome P450 hydrolase catalyzes the hydroxylation of narbomycin to obtain pikromycin. [7]
See also
References
- ↑ Brockmann, H. and Henkel, W. (1951). "Pikromycin, ein bitter schmeckendes Antibioticum aus Actinomyceten". ntibiotica aus Actinomyceten, 84: 184–288. doi:10.1002/cber.19510840306.
- ↑ Y. Xue and D. Sherman (2001). "Biosynthesis and Combinatorial Biosynthesis of Pikromycin-Related Macrolides in Streptomyces venezuelae". Metabolic Engineering 3: 15–26. doi:10.1006/mben.2000.0167.
- ↑ Maezawa, T. Hori, A. Kinumaki and M. Suzuki (1973). "Biological conversion of narbonolide to picromycin". The Journal of Antibiotics 26: 771–775. PMID 4792390.
- ↑ J.D. Kittendorf and D.H. Sherman (2009). "The Methymycin/Pikromycin Biosynthetic Pathway: A Model for Metabolic Diversity in Natural Product". Bioorg Med Chem 17: 2137–2146. doi:10.1016/j.bmc.2008.10.082.
- ↑ S. Guptaa, V. Lakshmanan, B.S. Kima, R. Fecik, and K. A. Reynolds (2008). "Generation of Novel Pikromycin Antibiotic Products Through Mutasynthesis". Chembiochem 10: 1609–1616. doi:10.1002/cbic.200700635.
- ↑ D.L. Akey, J.D. Kittendorf, J.W. Giraldes, R.A. Fecik, D.H. Sherman, and J.L. Smith (2006). "Structural basis for macrolactonization by the pikromycin thioesterase.". Nature Chemical Biology 2: 537–542.
- ↑ Y. Xue and D. Sherman (2001). "Biosynthesis and Combinatorial Biosynthesis of Pikromycin-Related Macrolides in Streptomyces venezuelae". Metabolic Engineering 3: 15–26. doi:10.1006/mben.2000.0167.