P1 phage

From Wikipedia, the free encyclopedia
P1 phage
Virus classification
Group: Group I (dsDNA)
Order: Caudovirales
Family: Myoviridae
Genus: P1-like viruses
Species: P1 Phage

P1 is a temperate bacteriophage (phage) that infects Escherichia coli and a some other bacteria. When undergoing a lysogenic cycle the phage genome exists as a plasmid in the bacterium[1] unlike other phages (e.g. the lambda phage) that integrate into the host DNA. * P1 has an icosahedral "head" containing the DNA attached to a contractile tail with six tail fibers.

  • The preceding information has some errors, which the original author may care to address in more detail than I can go into at this time. Bacteriophage lambda is in fact a temporate phage. A temporate phage is one with two alternative life cycles: lysogeny is when it integrates into the host genome and co-exists with the host; during the lytic cycle the phage genome circularizes and replicates, producing about 100 new viral particles before escaping from the bacterium by lysing the wall and membrane.

The P1 phage has gained research interest because it can be used to transduce the phenotype of a target bacterium. As it replicates during its lytic cycle it captures fragments of the host chromosome. If the resulting viral particles are used to infect a different host the captured dna fragments can be integrated into the new host's genome. This method of in vivo genetic engineering was widely used for many years and is still used today, though to a lesser extent. P1 can also be used to create the P1-derived artificial chromosome cloning vector which can carry relatively large fragments of DNA. Also, P1 encodes a site-specific recombinase, Cre, that is widely used to carry out cell-specific or time-specific DNA recombination by flanking the target DNA with loxP sites.(see Cre-Lox recombination)

Morphology

The virion is similar in structure to the T4 phage but simpler.[1] It has an icosahedral head[2] containing the genome attached at one vertex to the tail. The tail has a tube surrounded by a contractile sheath. It ends in a base plate with six tail fibres. The tail fibres are involved in attaching to the host and providing specificity.

Genome

The genome of the P1 phage is moderately large, around 93Kbp [1] in length (compared to the genomes of e.g. T4 - 169Kbp, lambda - 48Kbp and Ff - 6.4Kbp). In the viral particle it is in the form of a linear double stranded DNA molecule. Once inserted into the host it circularizes and replicates as a plasmid.

In the viral particle the DNA molecule is longer (110Kbp) than the actual length of the genome. It is created by cutting an appropriately sized fragment from a concatemeric DNA chain having multiple copies of the genome. (see the section below on lysis for how this is made) Due to this the ends of the DNA molecule are identical. This is referred to as being "terminally redundant". This is important for the DNA to be circularized in the host. Another consequence of the DNA being cut out of a concatemer is that a given linear molecule can start at any location on the circular genome. This is called a cyclical permutation.

The genome is especially rich in Chi sequences recognized by the bacterial recombinase RecBCD. The genome contains two origins of replication, oriR which replicates it during the lysogenic cycle and oriL which replicates it during the lytic stage. The genome of P1 has 112 protein coding and 5 untranslated genes.[1] It even encodes 3 of its own tRNAs which are expressed in the lytic stage.

The gene that encodes the tail fibers have an set of sequences that can be targeted by a site specific recombinase Cin. This causes the C terminal end of the protein to switch between two alternate forms at a low frequency. The viral tail fibers are responsible for the specificity of binding to the host receptor. The targets of the viral tail fibers are under a constant pressure to evolve and evade binding. This method of recombinational diversity of the tail allows the virus to keep up with the bacterium.[3] This system has close sequence homologies to recombinational systems in the tail fibers of unrelated phages like the mu phage and the lambda phage.

Life cycle

Temperate phage, such as P1, have the ability to exist within the bacterial cell they infect in two different ways. In lysogeny, * See note added above about the errors in the preceding and following sentences. P1 can exist within a bacterial cell as a circular DNA in that it exists by replicating as if it were a plasmid and does not cause cell death. Alternatively, in its lytic phase, P1 can promote cell lysis during growth resulting in host cell death. During lysogeny new phage particles are not produced. In contrast, during lytic growth many new phage particles are assembled and released from the cell. By alternating between these two modes of infection, P1 can survive during extreme nutritional conditions that may be imposed upon the bacterial host in which it exists.

A unique feature of phage P1 is that during lysogeny its genome is not incorporated into the bacterial chromosome as is commonly observed during lysogeny of other bacteriophage. Instead, P1 exists independently within the bacterial cell, much like a plasmid would. P1 replicates as a 90 kilobase (kb) plasmid in the lysogenic state and is partitioned equally into two new daughter cells during normal cell division.

Infection and early stages

The phage particle adsorbs onto the surface of the bacterium using the tail fibers for specificity. The tail sheath contracts and the DNA of the phage is injected into the host cell. The host DNA recombination machinery or the cre enzyme translated from the viral DNA recombine the terminally redundant ends and circularize the genome. Depending on various physiological cues, the phage may immediately proceed to the lytic phase or it may enter a lysogenic state.

Lysogeny

The genome of the P1 phage is maintained as a low copy number plasmid in the bacterium. The relatively large size of the plasmid requires[1] it to keep a low copy number lest it become too large a metabolic burden while it is a lysogen. As there is usually only one copy of the plasmid per bacterial genome, the plasmid stands a high chance of not being passed to both daughter cells. The P1 plasmid combats this by several methods:

  • The plasmid replication is tightly regulated by a RepA protein dependent mechanism. This is similar to the mechanism used by several other plasmids. It ensure that the plasmid divides in step with the host genome.[1]
  • Interlocked plasmids are quickly unlinked by Cre-lox recombination[4][5]
  • The plasmid encodes a plasmid addiction system that kills daughter cells that lose the plasmid. It consists of a stable protein toxin and an antitoxin that reversibly binds to and neutralizes it. Cells that lose the plasmid get killed as the antitoxin gets degraded faster than the toxin.

Lysis

The P1 plasmid has a separate origin of replication (oriL) that is activated during the lytic cycle. Replication begins by a regular bidirectional theta replication at oriL but later in the lytic phase,it switches to a rolling circle method of replication using the host recombination machinery.[1][6][7] This results in numerous copies of the genome being present on a single linear DNA molecule called a concatemer. The end of the concatemer is cut a specific site called the pac site or packaging site.[8] This is followed by the packing of the DNA into the heads till they are full. The rest of the concatemer that does not fit into one head is separated and the machinery begins packing this into a new head. The location of the cut is not sequence specific. Each head holds around 110kbp of DNA[8] so there is a little more than one complete copy of the genome (~90kbp) in each head, with the ends of the strand in each head being identical. After infecting a new cell this "terminal redundancy" is used by the host recombination machinery to cyclize the genome if it lacks two copies of the lox locus.[1][8] If two lox sites are present (one in each terminally redundant end) the cyclization is carried out by the cre recombinase.

Once the complete virions are assembled, the host cell is lysed, releasing the viral particles.

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Łobocka, Małgorzata B.; Debra J. Rose, Guy Plunkett, Marek Rusin, Arkadiusz Samojedny, Hansjörg Lehnherr, Michael B. Yarmolinsky, Frederick R. Blattner (November 2004). "Genome of Bacteriophage P1". Journal of Bacteriology 186 (21): 7032–7068. doi:10.1128/JB.186.21.7032-7068.2004. ISSN 0021-9193. PMC 523184. PMID 15489417. 
  2. Walker, J T; D H Walker (March 1983). "Coliphage P1 morphogenesis: analysis of mutants by electron microscopy.". Journal of Virology 45 (3): 1118–1139. ISSN 0022-538X. PMC 256520. PMID 6834479. 
  3. Sandmeier, H.; S. Iida, W. Arber (1992-06-01). "DNA Inversion Regions Min of Plasmid p15B and Cin of Bacteriophage P1: Evolution of Bacteriophage Tail Fiber Genes.". Journal of Bacteriology 174 (12): 3936–3944. ISSN 0021-9193. Retrieved 2012-03-27. 
  4. Adams, David E.; James B. Bliska, Nicholas R. Cozzarelli (1992-08-05). "Cre-lox recombination in Escherichia coli cells mechanistic differences from the in Vitro reaction". Journal of Molecular Biology 226 (3): 661–673. doi:10.1016/0022-2836(92)90623-R. ISSN 0022-2836. Retrieved 2012-03-26. 
  5. Austin, S; M Ziese, N Sternberg (September 1981). "A novel role for site-specific recombination in maintenance of bacterial replicons". Cell 25 (3): 729–736. doi:10.1016/0092-8674(81)90180-X. ISSN 0092-8674. PMID 7026049. 
  6. Cohen, Gerald; Etti Or, Wolfgang Minas, Nat L. Sternberg (1996-10-10). "The bacteriophage P 1 lytic replicon: directionality of replication and cis-acting elements". Gene 175 (1–2): 151–155. doi:10.1016/0378-1119(96)00141-2. ISSN 0378-1119. Retrieved 2012-03-27. 
  7. Cohen, Gerald (November 1983). "Electron microscopy study of early lytic replication forms of bacteriophage P1 DNA". Virology 131 (1): 159–170. doi:10.1016/0042-6822(83)90542-1. ISSN 0042-6822. Retrieved 2012-03-27. 
  8. 8.0 8.1 8.2 Sternberg, N.; J. Coulby (1990-10-01). "Cleavage of the Bacteriophage P1 Packaging Site (pac) Is Regulated by Adenine Methylation". Proceedings of the National Academy of Sciences 87 (20): 8070–8074. ISSN 0027-8424. Retrieved 2012-03-27. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.