P-adically closed field

From Wikipedia, the free encyclopedia

In mathematics, a p-adically closed field is a field that enjoys a closure property that is a close analogue for p-adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.[1]

Definition

Let K be the field ℚ of rational numbers and v be its usual p-adic valuation (with v(p)=1). If F is a (not necessarily algebraic) extension field of K, itself equipped with a valuation w, we say that (F,w) is formally p-adic when the following conditions are satisfied:

  • w extends v (that is, w(x)=v(x) for all x in K),
  • the residue field of w coincides with the residue field of v (the residue field being the quotient of the valuation ring \{x\in F:w(x)\geq 0\} by its maximal ideal \{x\in F:w(x)>0\}),
  • the smallest positive value of w coincides with the smallest positive value of v (namely 1, since v was assumed to be normalized): in other words, a uniformizer for K remains a uniformizer for F.

(Note that the value group of K may be larger than that of F since it may contain infinitely large elements over the latter.)

The formally p-adic fields can be viewed as an analogue of the formally real fields.

For example, the field ℚ(i) of Gaussian rationals, if equipped with the valuation w given by w(2+i)=1 (and w(2-i)=0) is formally 5-adic (the place v=5 of the rationals splits in two places of the Gaussian rationals since X^{2}+1 factors over the residue field with 5 elements, and w is one of these places). The field of 5-adic numbers (which contains both the rationals and the Gaussian rationals embedded as per the place w) is also formally 5-adic. On the other hand, the field of Gaussian rationals is not formally 3-adic for any valuation, because the only valuation w on it which extends the 3-adic valuation is given by w(3)=1 and its residue field has 9 elements.

When F is formally p-adic but that there does not exist any proper algebraic formally p-adic extension of F, then F is said to be p-adically closed. For example, the field of p-adic numbers is p-adically closed, and so is the algebraic closure of the rationals inside it (the field of p-adic algebraic numbers).

If F is p-adically closed, then:[2]

  • there is a unique valuation w on F which makes F p-adically closed (so it is legitimate to say that F, rather than the pair (F,w), is p-adically closed),
  • F is Henselian with respect to this place (that is, its valuation ring is so),
  • the valuation ring of F is exactly the image of the Kochen operator (see below),
  • the value group of F is an extension by (the value group of K) of a divisible group, with the lexicographical order.

The first statement is an analogue of the fact that the order of a real-closed field is uniquely determined by the algebraic structure.

The definitions given above can be copied to a more general context: if K is a field equipped with a valuation v such that

  • the residue field of K is finite (call q its cardinal and p its characteristic),
  • the value group of v admits a smallest positive element (call it 1, and say π is a uniformizer, i.e. v(\pi )=1),
  • K has finite absolute ramification, i.e., v(p) is finite (that is, a finite multiple of v(\pi )=1),

(these hypotheses are satisfied for the field of rationals, with q=π=p the prime number having valuation 1) then we can speak of formally v-adic fields (or {\mathfrak  {p}}-adic if {\mathfrak  {p}} is the ideal corresponding to v) and v-adically complete fields.

The Kochen operator

If K is a field equipped with a valuation v satisfying the hypothesis and with the notations introduced in the previous paragraph, define the Kochen operator by:

\gamma (z)={\frac  {1}{\pi }}\,{\frac  {z^{q}-z}{(z^{q}-z)^{2}-1}}

(when z^{q}-z\neq \pm 1). It is easy to check that \gamma (z) always has non-negative valuation. The Kochen operator can be thought of as a p-adic (or v-adic) analogue of the square function in the real case.

An extension field F of K is formally v-adic if and only if {\frac  {1}{\pi }} does not belong to the subring generated over the value ring of K by the image of the Kochen operator on F. This is an analogue of the statement (or definition) that a field is formally real when -1 is not a sum of squares.

First-order theory

The first-order theory of p-adically closed fields (here we are restricting ourselves to the p-adic case, i.e., K is the field of rationals and v is the p-adic valuation) is complete and model complete, and if we slightly enrich the language it admits quantifier elimination. Thus, one can define p-adically closed fields as those whose first-order theory is elementarily equivalent to that of {\mathbb  {Q}}_{p}.

References

  • Ax, James; Kochen, Simon (1965). "Diophantine problems over local fields. II. A complete set of axioms for -adic number theory". Amer. J. Math. (The Johns Hopkins University Press) 87 (3): 631648. doi:10.2307/2373066. JSTOR 2373066. 
  • Kochen, Simon (1969). "Integer valued rational functions over the -adic numbers: A -adic analogue of the theory of real fields". Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967). American Mathematical Society. pp. 5773. 
  • Kuhlmann, F.-V. "-adically closed field". Springer Online Reference Works: Encyclopaedia of Mathematics. Springer-Verlag. Retrieved 2009-02-03. 
  • Jarden, Moshe; Roquette, Peter (1980). "The Nullstellensatz over -adically closed fields". J. Math. Soc. Japan 32 (3): 425460. doi:10.2969/jmsj/03230425. 

Notes

  1. Ax & Kochen (1965)
  2. Jarden & Roquette (1980), lemma 4.1
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.