The oxoglutarate dehydrogenase complex (OGDC) or α-ketoglutarate dehydrogenase complex is an enzyme complex, most commonly known for its role in the citric acid cycle.
Units
Much like pyruvate dehydrogenase complex (PDC), this enzyme forms a complex composed of three components:
In fact, three classes of these multienzyme complexes have been characterized, one specific for pyruvate, a second specific for 2-oxoglutarate, and a third specific for branched-chain α-keto acids.
Properties
Metabolic pathways
This enzyme participates in three different pathways:
Kinetic properties
The following values are from Azotobacter vinelandii (1):
- KM: 0.14 ± 0.04 mM
- Vmax : 9 ± 3 μmol.min-1.mg-1
Citric acid cycle
Reaction
The reaction catalyzed by this enzyme in the citric acid cycle is:
- α-ketoglutarate + NAD+ + CoA → Succinyl CoA + CO2 + NADH
Oxoglutarate dehydrogenase (α-Ketoglutarate dehydrogenase)
This reaction proceeds in three steps:
- decarboxylation of α-ketoglutarate,
- reduction of NAD+ to NADH,
- and subsequent transfer to CoA, which forms the end product, succinyl CoA.
ΔG°' for this reaction is -7.2 kcal mol-1. The energy needed for this oxidation is conserved in the formation of a thioester bond of succinyl CoA.
Regulation
Oxoglutarate dehydrogenase is a key control point in the citric acid cycle. It is inhibited by its products, succinyl CoA and NADH. A high energy charge in the cell will also be inhibitive. ADP and calcium ions are allosteric activators of the enzyme.
Pathology
2-Oxo-glutarate dehydrogrenase is an autoantigen recognized in primary biliary cirrhosis, a form of acute liver failure. These antibodies appear to recognize oxidized protein that has resulted from inflammatory immune responses. Some of
these inflammatory responses are explained by gluten sensitivity.[1] Other mitochondrial autoantigens
include pyruvate dehydrogenase and branched-chain alpha-keto acid dehydrogenase complex, which are antigens recognized by anti-mitochondrial antibodies.
Activity of the 2-oxoglutarate dehydrogenase complex is decreased in many neurodegenerative diseases.
References
- ↑ Leung PS, Rossaro L, Davis PA, et al. (2007). "Antimitochondrial antibodies in acute liver failure: Implications for primary biliary cirrhosis". Hepatology 46: 1436. doi:10.1002/hep.21828. PMID 17657817.
- Bunik V, Westphal AH, de Kok A: Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii evidence for the formation of a precatalytic complex with 2-oxoglutarate. Eur J Biochem 2000; 267(12): 3583-91. PMID 10848975.
- Bunik VI, Strumilo S: "Regulation of Catalysis Within Cellular Network: Metabolic and Signaling Implications of the 2-Oxoglutarate Oxidative Decarboxylation." Current Chemical Biology, 2009, 3: 279-290
- Bunik VI, Fernie AR: "Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation." Biochem. J. 2009, 422: 405–421
- L. Trofimova, M. Lovat, A. Groznaya, E. Efimova, T. Dunaeva, M. Maslova, A. Graf, and V. Bunik: "Behavioral Impact of the Regulation of the Brain 2-Oxoglutarate Dehydrogenase Complex by Synthetic Phosphonate Analog of 2-Oxoglutarate: Implications into the Role of the Complex in Neurodegenerative Diseases." International Journal of Alzheimer Disease 2010; Volume 2010, Article ID 749061, 8 pages, doi:10.4061/2010/749061, http://www.sage-hindawi.com/journals/ijad/2010/749061.html
External links
|
---|
| Cycle | |
---|
| Anaplerotic |
|
---|
| Mitochondrial electron transport chain/ oxidative phosphorylation |
|
---|
|
|
mt, k, c/g/r/p/y/i, f/h/s/l/o/e, a/u, n, m
|
k, cgrp/y/i, f/h/s/l/o/e, au, n, m, epon
|
m (A16/C10), i (k, c/g/r/p/y/i, f/h/s/o/e, a/u, n, m)
|
|
|
|