Order-4 apeirogonal tiling

From Wikipedia, the free encyclopedia
Order-4 apeirogonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex figure...
Schläfli symbol{,4}
r{,}
t(,,)
t0,1,2,3(∞,∞,∞,∞)
Wythoff symbol4 | 2
2 |
|
Coxeter diagram

Symmetry group[,4], (*42)
[,], (*2)
[(,,)], (*)
(*)
DualInfinite-order square tiling
PropertiesVertex-transitive, edge-transitive, face-transitive edge-transitive

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {,4}.

Symmetry

The dual to this tiling represents the fundamental domains of orbifold notation * symmetry, a square domain with four ideal vertices.

Uniform colorings

Like the Euclidean square tiling there are 9 uniform colorings for this tiling, with 3 uniform colorings generated by triangle reflective domains. A fourth can be constructed from an infinite square symmetry (*∞∞∞∞) with 4 colors around a vertex. The bicolor rectified, t1{∞,∞}, coloring defines the fundamental domains of [(∞,4,4)], (*∞44) symmetry, usually shown as black and white domains of reflective orientations.

Regular Rectification Fundamental
domains
Truncations Omnitruncation

[∞,4], (*∞42)
{∞,4}

[∞,∞], (*∞∞2)
t1{∞,∞}

[(∞,4,4)], (*∞44)

[(∞,∞,∞)], (*∞∞∞)
t0,1(∞,∞,∞)

[(∞,∞,∞)], (*∞∞∞)
t1,2(∞,∞,∞)

[(∞,∞,∞)], (*∞∞∞)
t0,2(∞,∞,∞)

(*∞∞∞∞)
t0,1,2,3(∞,∞,∞,∞)

Related polyhedra and tiling

This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram , with n progressing to infinity.

Spherical Euclidean Hyperbolic tilings

{2,4}

{3,4}

{4,4}

{5,4}

{6,4}

{7,4}

{8,4}
...
{,4}
Noncompact hyperbolic uniform tilings in [,4] family
Symmetry: [,4], (*42)
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Alternation duals
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.
Noncompact hyperbolic uniform tilings in [,] family
Symmetry: [,], (*2)
{,} t{,} r{,} 2t{,}=t{,} 2r{,}={,} rr{,} tr{,}
Dual tilings
V V.. V(.)2 V.. V V4..4. V4.4.
Alternations
[1+,,]
(*2)
[+,]
(*)
[,1+,]
(*)
[,+]
(*)
[,,1+]
(*2)
[(,,2+)]
(2*)
[,]+
(2)
h0{,} h0,1{,} h1{,} h1,2{,} h2{,} h0,2{,} s{,}
Alternation duals
V(.) V(3.)3 V(.4)4 V(3.)3 V V(4..4)2 V3.3..3.
Noncompact hyperbolic uniform tilings in [(,,)] family
Symmetry: [(,,)], (*)
(,,) r(,,) (,,) r(,,) (,,) r(,,) t(,,)
Dual tilings
V V... V V... V V... V..
Alternations
[(1+,,,)]
(*)
[+,,)]
(*)
[,1+,,)]
(*)
[,+,)]
(*)
[(,,,1+)]
(*)
[(,,+)]
(*)
[,,)]+
()
h(,,) hr(,,) h(,,) hr(,,) h(,,) hr(,,) s(,,)
Alternation duals
V(.) V(.4)4 V(.) V(.4)4 V(.) V(.4)4 V3..3..3.

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 

See also

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.