Ole Rømer
Ole Rømer | |
---|---|
Ole Rømer, portrait by Jacob Coning from c. 1700 | |
Born |
Århus | 25 September 1644
Died |
19 September 1710 65) Copenhagen | (aged
Nationality | Danish |
Fields | Astronomy |
Known for | speed of light |
Signature |
Ole Christensen Rømer (Danish pronunciation: [o(ː)lə ˈʁœːˀmɐ]; 25 September 1644, Århus – 19 September 1710, Copenhagen) was a Danish astronomer who in 1676 made the first quantitative measurements of the speed of light. In scientific literature alternative spellings such as "Roemer", "Römer", or "Romer" are common.
General biography
Rømer was born on 25 September 1644 in Århus to a merchant and skipper, Christen Pedersen, and Anna Olufsdatter Storm, daughter of an alderman. Christen Pedersen had taken to using the name Rømer, which means that he was from the Danish island of Rømø, to distinguish himself from a couple of other people named Christen Pedersen.[1] There are few records of Ole Rømer before 1662, when he graduated from the old 'Aarhus Katedralskole' (The Cathedral school of Aarhus),[2] moved to Copenhagen and matriculated at the University of Copenhagen. His mentor at the University was Rasmus Bartholin, who published his discovery of the double refraction of a light ray by Iceland spar (calcite) in 1668, while Rømer was living in his home. Rømer was given every opportunity to learn mathematics and astronomy using Tycho Brahe's astronomical observations, as Bartholin had been given the task of preparing them for publication.[3]
Rømer was employed by the French government: Louis XIV made him tutor for the Dauphin, and he also took part in the construction of the magnificent fountains at Versailles.
In 1681, Rømer returned to Denmark and was appointed professor of astronomy at the University of Copenhagen, and the same year he married Anne Marie Bartholin, the daughter of Rasmus Bartholin. He was active also as an observer, both at the University Observatory at Rundetårn and in his home, using improved instruments of his own construction. Unfortunately, his observations have not survived: they were lost in the great Copenhagen Fire of 1728. However, a former assistant (and later an astronomer in his own right), Peder Horrebow, loyally described and wrote about Rømer's observations.
In Rømer's position as royal mathematician, he introduced the first national system for weights and measures in Denmark on 1 May 1683. Initially based on the Rhine foot, a more accurate national standard was adopted in 1698. Later measurements of the standards fabricated for length and volume show an excellent degree of accuracy. His goal was to achieve a definition based on astronomical constants, using a pendulum. This would happen after his death, practicalities making it too inaccurate at the time. Notable is also his definition of the new Danish mile of 24,000 Danish feet (circa 7,532 m).
In 1700, Rømer managed to get the king to introduce the Gregorian calendar in Denmark-Norway — something Tycho Brahe had argued for in vain a hundred years earlier.
Rømer developed one of the first temperature scales while convalescing from a broken leg.[4] Fahrenheit visited him in 1708 and improved on the Rømer scale, the result being the familiar Fahrenheit temperature scale still in use today in a few countries.
Rømer also established several navigation schools in many Danish cities.
In 1705, Rømer was made the second Chief of the Copenhagen Police, a position he kept until his death in 1710. As one of his first acts, he fired the entire force, being convinced that the morale was alarmingly low. He was the inventor of the first street lights (oil lamps) in Copenhagen, and worked hard to try to control the beggars, poor people, unemployed, and prostitutes of Copenhagen.
In Copenhagen, Rømer made rules for building new houses, got the city's water supply and sewers back in order, ensured that the city's fire department got new and better equipment, and was the moving force behind the planning and making of new pavement in the streets and on the city squares.
Roemer died at the age of 65 in 1710.
Rømer and the speed of light
The determination of longitude is a significant practical problem in cartography and navigation. Philip III of Spain offered a prize for a method to determine the longitude of a ship out of sight of land, and Galileo proposed a method of establishing the time of day, and thus longitude, based on the times of the eclipses of the moons of Jupiter, in essence using the Jovian system as a cosmic clock; this method was not significantly improved until accurate mechanical clocks were developed in the eighteenth century. Galileo proposed this method to the Spanish crown (1616–1617) but it proved to be impractical, because of the inaccuracies of Galileo's timetables and the difficulty of observing the eclipses on a ship. However, with refinements the method could be made to work on land.
After studies in Copenhagen, Rømer joined the observatory of Uraniborg on the island of Hven, near Copenhagen, in 1671. Over a period of several months, Jean Picard and Rømer observed about 140 eclipses of Jupiter's moon Io, while in Paris Giovanni Domenico Cassini observed the same eclipses. By comparing the times of the eclipses, the difference in longitude of Paris to Uranienborg was calculated.
Cassini had observed the moons of Jupiter between 1666 and 1668, and discovered discrepancies in his measurements that, at first, he attributed to light having a finite speed. In 1672 Rømer went to Paris and continued observing the satellites of Jupiter as Cassini's assistant. Rømer added his own observations to Cassini's and observed that times between eclipses (particularly those of Io) got shorter as Earth approached Jupiter, and longer as Earth moved farther away. Cassini made an announcement to the Academy of Sciences on 22 August 1676:
This second inequality appears to be due to light taking some time to reach us from the satellite; light seems to take about ten to eleven minutes [to cross] a distance equal to the half-diameter of the terrestrial orbit.[5]
Oddly, Cassini seems to have abandoned this reasoning, which Rømer adopted and set about buttressing in an irrefutable manner, using a selected number of observations performed by Picard and himself between 1671 and 1677. Rømer presented his results to the French Academy of Sciences, and it was summarised soon after by an anonymous reporter in a short paper, Démonstration touchant le mouvement de la lumière trouvé par M. Roemer de l'Académie des sciences, published 7 December 1676 in the Journal des sçavans. Unfortunately the paper bears the stamp of the reporter failing to understand Rømer's presentation, and as the reporter resorted to cryptic phrasings to hide his lack of understanding, he obfuscated Rømer's reasoning in the process. Unfortunately Rømer himself never published his results.[6]
Assume the Earth is in L, at the second quadrature with Jupiter (i.e. ALB is 90°), and Io emerges from D. After several orbits of Io, at 42.5 hours per orbit, the Earth is in K. Rømer reasoned that if light is not propagated instantaneously, the additional time it takes to reach K, that he reckoned about 3½ minutes, would explain the observed delay. Rømer observed immersions in C from the symmetric positions F and G, to avoid confusing eclipses (Io shadowed by Jupiter from C to D) and occultations (Io hidden behind Jupiter at various angles). In the table below, his observations in 1676, including the one on August 7, believed to be in opposition H,[7] and the one observed at Paris Observatory to be 10 minutes late, on November 9.[8]
Month | Day | Time | Tide | orbits | average (hours) |
---|---|---|---|---|---|
June | 13 | 2:49:42 | C | ||
2,750,789s | 18 | 42.45 | |||
13 | 22:56:11 | C | |||
4,747,719s | 31 | 42.54 | |||
Aug | 7 | 21:44:50 | D | ||
612,065s | 4 | 42.50 | |||
Aug | 14 | 23:45:55 | D | ||
764,718s | 5 | 42.48 | |||
Aug | 23 | 20:11:13 | D | ||
6,906,272s | 45 | 42.63 | |||
Nov | 9 | 17:35:45 | D |
By trial and error, during eight years of observations Rømer worked out how to account for the retardation of light when reckoning the ephemeris of Io. He calculated the delay as a proportion of the angle corresponding to a given Earth's position with respect to Jupiter, Δt = 22·(α⁄180°)[minutes]. When the angle α is 180° the delay becomes 22 minutes, which may be interpreted as the time necessary for the light to cross a distance equal to the diameter of the Earth's orbit, H to E.[8] (Actually, Jupiter is not visible from the conjunction point E.) That interpretation makes it possible to calculate the strict result of Rømer's observations: The ratio of the speed of light to the speed with which Earth orbits the sun, which is the ratio of the duration of a year divided by pi as compared to the 22 minutes
365·24·60⁄π·22 ≈ 7,600.
In comparison the modern value is circa 299,792 km s−1⁄29.8 km s−1 ≈ 10,100.[9]
Rømer neither calculated this ratio, nor did he give a value for the speed of light. However, many others calculated a speed from his data, the first being Christiaan Huygens; after corresponding with Rømer and eliciting more data, Huygens deduced that light travelled 16 2⁄3 Earth diameters per second.[10]
Rømer's view that the velocity of light was finite was not fully accepted until measurements of the so-called aberration of light were made by James Bradley in 1727.
In 1809, again making use of observations of Io, but this time with the benefit of more than a century of increasingly precise observations, the astronomer Jean Baptiste Joseph Delambre reported the time for light to travel from the Sun to the Earth as 8 minutes and 12 seconds. Depending on the value assumed for the astronomical unit, this yields the speed of light as just a little more than 300,000 kilometres per second. The modern value is 8 minutes and 19 seconds, and a speed of 299,792.458 km/s.
A plaque at the Observatory of Paris, where the Danish astronomer happened to be working, commemorates what was, in effect, the first measurement of a universal quantity made on this planet.
Inventions
In addition to inventing the first street lights in Copenhagen, Rømer also invented the meridian circle, the altazimuth and the Passage Instrument.
Ole Romer Medal
The Ole Romer Medal is given annually by the Danish Natural Science Research Council for outstanding research.
The Ole Rømer Museum
The Ole Rømer Museum is located in the municipality of Høje-Taastrup, Denmark, at the excavated site of Rømer's observatory Observatorium Tusculanum at Vridsløsemagle. The observatory operated until about 1716, when the remaining instruments were moved to Rundetårn in Copenhagen. There is a large collection of ancient and more recent astronomical instruments on display at the museum. Since 2002 this exhibition has been a part of the museum Kroppedal at the same location.
Various Honours
In Denmark, Ole Rømer has been honoured in various ways through the ages. He has been portrayed on bank notes for example. Streets in both Aarhus and Copenhagen, are named after him ('Ole Rømers Gade' and 'Rømersgade' respectively). Aarhus University's astronomical observatory are named The Ole Rømer Observatory ('Ole Rømer Observatoriet') in his honour and a Danish satellite project to measure the age, temperature, physical and chemical conditions of selected stars, were named The Rømer Satellite ('Rømer satellitten'). The project stranded in 2002 and was never realised though. [11]
The Römer crater on the Moon is named after him.
Popular culture
Ole Rømer features in the game Empire: Total War as a gentleman under Denmark.
In the 1960s, the comic-book superhero The Flash on a number of occasions would measure his velocity in "Roemers" [sic], in honour of Ole Rømer's "discovery" of the speed of light.[citation needed]
General references
- R. J. MacKay and R. W. Oldford. "Scientific Method, Statistical Method and the Speed of Light", Statistical Science 15(3):254–278, 2000. (mostly about A.A. Michelson, but considers forerunners including Rømer. Also available on line: Stats.uwaterloo.ca)
- Axel V. Nielsen: Ole Rømer. En Skildring af hans Liv og Gerning. København, 1944.
Notes and references
- ↑ Friedrichsen, Per; Tortzen, Chr. Gorm (2001). Ole Rømer – Korrespondance og afhandlinger samt et udvalg af dokumenter (in Danish). Copenhagen: C. A. Reitzels Forlag. p. 16. ISBN 87-7876-258-8.
- ↑ History of the School Aarhus Katedralskole
- ↑ Friedrichsen; Tortzen (2001), pp. 19–20.
- ↑ Tom Shachtman, Absolute Zero and the Conquest of Cold, page 48, Houghton Mifflin Harcourt, 2000 ISBN 0547525958.
- ↑ Bobis, Laurence; Lequeux, James (2008). "Cassini, Rømer and the velocity of light". J. Astron. Hist. Heritage 11 (2): 97–105..
- ↑ Teuber, Jan (2004). "Ole Rømer og den bevægede Jord – en dansk førsteplads?". In Friedrichsen, Per; Henningsen, Ole; Olsen, Olaf; Thykier, Claus; Tortzen, Chr. Gorm (eds.). Ole Rømer – videnskabsmand og samfundstjener (in Danish). Copenhagen: Gads Forlag. p. 218. ISBN 87-12-04139-4.
- ↑ Point H had occurred about one month earlier, according to Dieter Egger (1997-02-24). "Visualize Solar System at a given Epoch". Retrieved 2009-03-09.
- ↑ 8.0 8.1 Saito, Yoshio (June 2005). "A Discussion of Roemer's Discovery concerning the Speed of Light". AAPPS Bulletin 15 (3): 9–17.
- ↑ Knudsen, Jens Martin; Hjorth, Poul G. (1996) [1995]. Elements of Newtonian Mechanics (2nd ed.). Berlin: Springer Verlag. p. 367. ISBN 3-540-60841-9.
- ↑ Huygens, Christian (8 January 1690) Treatise on Light. Translated into English by Silvanus P. Thompson, Project Gutenberg etext, p. 11. Retrieved on 2007-04-29.
- ↑ See the Danish Wikipedia article on Ole Rømer
External links
Wikimedia Commons has media related to Ole Rømer. |
- Roemer, Ole Christensen (at the Galileo Project)
- Obs.univ-lyon1.fr, Démonstration touchant le mouvement de la lumière (The 1676 paper on the speed of light, in old French, as ordinary text)
- Rømer and the Doppler Principle. (further details on Rømer's result)
- (Danish) Fysikeren Ole Rømer (in Danish)
- Kroppedal Museum
- Ole Rømer on the 50 Danish Kroner banknote
|