Normal Accidents

From Wikipedia, the free encyclopedia
Normal Accidents
Author Charles Perrow
Publisher Basic Books
Publication date
1984
ISBN ISBN 978-0-691-00412-9

Normal Accidents: Living with High-Risk Technologies is an award-winning 1984 book by Charles Perrow, which provides a detailed analysis of complex systems conducted from a social sciences perspective. It was the first to "propose a framework for characterizing complex technological systems such as air traffic, marine traffic, chemical plants, dams, and especially nuclear power plants according to their riskiness". Perrow says that multiple and unexpected failures are built into society's complex systems. They are unavoidable and cannot be designed around.[1] A German translation of the book was published in 1987 with a second edition in 1992.[2]

System accidents

"Normal" accidents, or system accidents, are so-called by Perrow because such accidents are inevitable in extremely complex systems. Given the characteristic of the system involved, multiple failures which interact with each other will occur, despite efforts to avoid them. Perrow said that operator error is a very common problem, many failures relate to organizations rather than technology, and big accidents almost always have very small beginnings.[3] Such events appear trivial to begin with before unpredictably cascading through the system to create a large event with severe consequences.[1]

Normal Accidents contributed key concepts to a set of intellectual developments in the 1980s that revolutionized the conception of safety and risk. It made the case for examining technological failures as the product of highly interacting systems, and highlighted organizational and management factors as the main causes of failures. Technological disasters could no longer be ascribed to isolated equipment malfunction, operator error or acts of God.[4]

Three Mile Island

The inspiration for Perrow's books was the 1979 Three Mile Island accident, where a nuclear accident resulted from an unanticipated interaction of multiple failures in a complex system. The event was an example of a normal accident because it was "unexpected, incomprehensible, uncontrollable and unavoidable".[5]

Perrow concluded that the failure at Three Mile Island was a consequence of the system's immense complexity. Such modern high-risk systems, he realized, were prone to failures however well they were managed. It was inevitable that they would eventually suffer what he termed a 'normal accident'. Therefore, he suggested, we might do better to contemplate a radical redesign, or if that was not possible, to abandon such technology entirely.[4]

New reactor designs

One disadvantage of any new nuclear reactor technology is that safety risks may be greater initially as reactor operators have little experience with the new design. Nuclear engineer David Lochbaum has explained that almost all serious nuclear accidents have occurred with what was at the time the most recent technology. He argues that "the problem with new reactors and accidents is twofold: scenarios arise that are impossible to plan for in simulations; and humans make mistakes".[6] As one director of a U.S. research laboratory put it, "fabrication, construction, operation, and maintenance of new reactors will face a steep learning curve: advanced technologies will have a heightened risk of accidents and mistakes. The technology may be proven, but people are not".[6]

See also

Literature

References

  1. 1.0 1.1 Daniel E Whitney (2003). "Normal Accidents by Charles Perrow". Massachusetts Institute of Technology. 
  2. see data of the book in the German National Library http://d-nb.info/920805043
  3. Perrow, Charles. Normal Accidents: Living with High-Risk Technologies New York: Basic Books, 1984. p.5
  4. 4.0 4.1 Nick Pidgeon (22 September 2011 Vol 477). "In retrospect:Normal accidents". Nature. 
  5. Perrow, C. (1982), "The President’s Commission and the Normal Accident", in Sils, D., Wolf, C. and Shelanski, V. (Eds), Accident at Three Mile Island: The Human Dimensions, Westview, Boulder, pp.173–184.
  6. 6.0 6.1 Benjamin K. Sovacool. A Critical Evaluation of Nuclear Power and Renewable Electricity in Asia, Journal of Contemporary Asia, Vol. 40, No. 3, August 2010, p. 381.
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.