Niobium dioxide

From Wikipedia, the free encyclopedia
Niobium dioxide
Identifiers
CAS number 12034-59-2 YesY
PubChem 82839
EC number 234-809-7
Jmol-3D images {{#if:O=[Nb]=O|Image 1
Properties
Molecular formula NbO2
Molar mass 124.91 g/mol
Appearance bluish black
Melting point 1915 °C [1]
Structure
Crystal structure Tetragonal, tI96
Space group I41/a, No. 88
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

Niobium dioxide, is the chemical compound with the formula NbO2. It is a bluish black non-stoichiometric solid with a composition range of NbO1.94-NbO2.09[1] It can be prepared by reacting Nb2O5 with H2 at 800–1350 °C.[1] An alternative method is reaction of Nb2O5 with Nb powder at 1100 °C.[2]

The room temperature form NbO2 has a tetragonal, rutile-like structure with short Nb-Nb distances indicating Nb-Nb bonding.[3] High temp form also has a rutile-like structure with short Nb-Nb distances.[4] Two high pressure phases have been reported one with a rutile-like structure, again with short Nb-Nb distances, and a higher pressure with baddeleyite-related structure.[5]

NbO2 is insoluble in water and is a powerful reducing agent, reducing carbon dioxide to carbon and sulfur dioxide to sulfur.[1] In an industrial process for the production of niobium metal, NbO2 is produced as an intermediate, by the hydrogen reduction of Nb2O5.[6] The NbO2 is subsequently reacted with magnesium vapour to produce niobium metal.[7]

References

  1. 1.0 1.1 1.2 1.3 C. K. Gupta, A. K. Suri, S Gupta, K Gupta (1994), Extractive Metallurgy of Niobium, CRC Press, ISBN 0-8493-6071-4
  2. Pradyot Patnaik (2002), Handbook of Inorganic Chemicals,McGraw-Hill Professional, ISBN 0-07-049439-8
  3. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  4. Bolzan, A; Fong, Celesta; Kennedy, Brendan J.; Howard, Christopher J. (1994). "A Powder Neutron Diffraction Study of Semiconducting and Metallic Niobium Dioxide". Journal of Solid State Chemistry 113: 9. Bibcode:1994JSSCh.113....9B. doi:10.1006/jssc.1994.1334. 
  5. Haines, J.; Léger, J. M.; Pereira, A. S. (1999). "High-pressure structural phase transitions in semiconducting niobium dioxide". Physical Review B 59 (21): 13650. Bibcode:1999PhRvB..5913650H. doi:10.1103/PhysRevB.59.13650. 
  6. Patent EP1524252, Sintered bodies based on niobium suboxide, Schnitter C, Wötting G
  7. Method for producing tantallum/niobium metal powders by the reduction of their oxides by gaseous magnesium, US patent 6171363 (2001), Shekhter L.N., Tripp T.B., Lanin L.L. (H. C. Starck, Inc.)
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.