N-localizer

From Wikipedia, the free encyclopedia

The N-localizer is a device that guides stereotactic surgery or radiosurgery using tomographic images that are obtained via medical imaging technologies such as computed tomography (CT) or magnetic resonance imaging (MRI).[4] It comprises a diagonal rod that extends from the top of one vertical rod to the bottom of a second vertical rod, and is shaped like a capital "N" (Figure 1A). This device was invented in 1978 by the American physician and computer scientist Russell Brown.[5][6][7][8]

This invention stimulated intense interest in, and further development of, image-guided surgery, specifically, stereotactic surgery and radiosurgery. It is widely used today in the Brown-Roberts-Wells (BRW),[9] Cosman-Roberts-Wells (CRW)[10] and Leksell[11] stereotactic systems and other stereotactic and radiosurgical instruments.

How it works

Medical images that are obtained using technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are two-dimensional, planar, tomographic images of patient anatomy. Treatment modalities such as stereotactic surgery and radiosurgery operate in the three-dimensional space of the patient. Hence, the central problem with using CT or MRI to guide stereotactic surgery or radiosurgery is the transfer of patient information from the two-dimensional coordinate system of the planar CT or MRI image into the three-dimensional coordinate system of the stereotactic or radiosurgical instrument. The N-localizer provides an elegant solution to this problem by creating fiducial marks or landmarks in each tomographic image. These fiducial marks specify the spatial orientation of the image plane with respect to the N-localizer (Figure 1). The N-localizer comprises a diagonal rod that extends from the top of one vertical rod to the bottom of a second vertical rod. This combination of rods creates two circles and one ellipse in a tomographic image. The ellipse moves away from one circle and towards the other circle as the image plane moves upward with respect to the N-localizer. Measuring the relative distances between the ellipse and the two circles permits calculation of the point where the image plane intersects the diagonal rod. The attachment of three N-localizers to a stereotactic instrument (Figure 2) permits calculation of three points where the image plane intersects the three diagonal rods (Figure 3). Because three points determine a plane in three-dimensional space, these three points of intersection determine the spatial orientation of the image plane relative to the stereotactic instrument. Therefore, the spatial orientation of any patient anatomy that is seen in the planar image is also determined relative to the stereotactic instrument. Because the spatial orientation of the patient anatomy is defined relative to the stereotactic instrument, patient information may be transferred from the two-dimensional coordinate system of the planar image into the three-dimensional coordinate system of the stereotactic instrument.[12]

References

  1. Brown, Russell A. (June 1979). "A computerized tomography-computer graphics approach to stereotaxic localization". Journal of Neurosurgery 50 (6): 715–20. doi:10.3171/jns.1979.50.6.0715. PMID 374688. 
  2. Brown RA, Roberts TS, Osborn AG (1981). "Simplified CT-guided stereotaxic biopsy". American Journal of Neuroradiology 2 (2): 181–184. PMID 6784559. 
  3. Brown, Russell A. (October 2013). "The mathematics of the N-localizer for stereotactic neurosurgery". Cureus 5 (10): e142. doi:10.7759/cureus.142. 
  4. Perry, Janice (October 2, 1983). "New system may improve brain surgery". Times Daily. Retrieved 19 May 2011. 
  5. Brown RA, Nelson JA (June 2012). "Invention of the N-localizer for stereotactic neurosurgery and its use in the Brown-Roberts-Wells stereotactic frame". Neurosurgery 70 (2 Supplement Operative): 173–176. doi:10.1227/NEU.0b013e318246a4f7. PMID 22186842. 
  6. Brown RA, Nelson JA (October 2013). "The origin of the N-localizer for stereotactic neurosurgery". Cureus 5 (9): e140. doi:10.7759/cureus.140. 
  7. Brown RA, Nelson JA (January 2014). "The history and mathematics of the N-localizer for stereotactic neurosurgery". Cureus 6 (1): e156. doi:10.7759/cureus.156. 
  8. US patent 4608977, Brown, RA, "System using computed tomography as for selective body treatment", issued 1986-09-02 
  9. Brown RA, Roberts TS, Osborn AG (July–August 1980). "Stereotaxic frame and computer software for CT-directed neurosurgical localization". Investigative Radiology 15 (4): 308–12. doi:10.1097/00004424-198007000-00006. PMID 7009485. 
  10. Couldwell WT, Apuzzo ML (1990). "Initial experience related to the Cosman-Roberts-Wells stereotactic instrument. Technical note". Journal of Neurosurgery 72 (1): 145–8. doi:10.3171/jns.1990.72.1.0145. PMID 2403588. 
  11. Leksell L, Jernberg B (1980). "Stereotaxis and tomography. A technical note.". Acta Neurochirurgica 52 (1-2): 1–7. doi:10.1007/BF01400939. PMID 6990697. 
  12. Brown, Russell A. (July–August 1979). "A stereotactic head frame for use with CT body scanners". Investigative Radiology 14 (4): 300–4. doi:10.1097/00004424-197907000-00006. PMID 385549. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.