Multicopy single-stranded DNA
Discovery
Before the discovery of msDNA in myxobacteria,[4][5] a group of swarming, soil-dwelling bacteria, it was thought that the enzymes known as reverse transcriptases (RT) existed only in eukaryotes and viruses. The discovery led to an increase in research of the area; as a result, msDNA has been found to be widely distributed among bacteria, including various strains of Escherichia coli and pathogenic bacteria.[6] Further research discovered similarities between HIV-encoded reverse transcriptase and an open reading frame (ORF) found in the msDNA coding region. Tests confirmed the presence of reverse transcriptase activity in crude lysates of retron-containing strains.[7] Although an RNase H domain was tentatively identified in the retron ORF, it was later found that the RNase H activity required for msDNA synthesis is actually supplied by the host.[8]
Retrons
The discovery of msDNA has led to broader questions regarding where reverse transcriptase originated, as genes encoding for reverse transcriptase (not necessarily associated with msDNA) have been found in prokaryotes, eukaryotes, viruses and even archaebacteria. After a DNA fragment coding for the production of msDNA in E. coli was discovered,[9] it was conjectured that bacteriophages might have been responsible for the introduction of the RT gene into E. coli.[10] These discoveries suggest that reverse transcriptase played a role in the evolution of viruses from bacteria, with one hypothesis stating that, with the help of reverse transcriptase, viruses may have arisen as a breakaway msDNA gene that acquired a protein coat. Since nearly all RT genes function in retrovirus replication and/or the movement of transposable elements, it is reasonable to imagine that retrons might be mobile genetic elements, but there has been little supporting evidence for such a hypothesis, save for the observed fact that msDNA is widely yet sporadically dispersed among bacterial species in a manner suggestive of both horizontal and vertical transfer.[6][2] Since it is not known whether retron sequences per se represent mobile elements, retrons are functionally defined by their ability to produce msDNA while deliberately avoiding speculation about other possible activities.
Function
The function of msDNA remains unknown even though many copies are present within cells. Knockout mutations that do not express msDNA are viable, so the production of msDNA is not essential to life under laboratory conditions. Over-expression of msDNA is mutagenic, apparently as a result of titrating out repair proteins by the mismatched base pairs that are typical of their structure.[2] It has been suggested that msDNA may have some role in pathogenicity or the adaptation to stressful conditions.[11] Sequence comparison of msDNAs from Myxococcus xanthus, Stigmatella aurantiaca, [1] and many other bacteria[6][11] reveal conserved and hypervariable domains reminiscent of conserved and hypervariable sequences found in allorecognition molecules.[12] The major msDNAs of M. xanthus and S. aurantiaca, for instance, share 94% sequence homology except within a 19 base-pair domain that shares sequence homology of only 42%.[1] The presence of such domains is significant because myxobacteria exhibit complex cooperative social behaviors including swarming and formation of fruiting bodies, while E. coli and other pathogenic bacteria form biofilms that exhibit enhanced antibiotic and detergent resistance. The sustainability of social assemblies that require significant individual investment of energy is generally dependent on the evolution of allorecognition mechanisms that enable groups to distinguish self versus non-self.[13]
Biosynthesis
References
Lampson, Bert, Masayori Inouye, and Sumiko Inouye (2001). "The msDNAs of bacteria". Prog. Nuc. Acid Res. and Mol. Biol. 67: 65–91. doi:10.1016/S0079-6603(01)67025-9.
Zimmerly, Steven. "Mobile introns and retroelements in bacteria." In Mullany, Peter, ed. (2005). The Dynamic Bacterial Genome. Advances in Molecular and Cellular Microbiology 8. Cambridge University Press. ISBN 978-0-521-82157-5.
Footnotes
- ↑ 1.0 1.1 1.2 Dhundale A, Lampson B, Furuichi T, Inouye M, Inouye S (December 1987). "Structure of msDNA from Myxococcus xanthus: evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA". Cell 51 (6): 1105–12. doi:10.1016/0092-8674(87)90596-4.
- ↑ 2.0 2.1 2.2 2.3 Lampson BC, Inouye M, Inouye S (2005). "Retrons, msDNA, and the bacterial genome". Cytogenet. Genome Res. 110 (1-4): 491–9. doi:10.1159/000084982. PMID 16093702.
- ↑ Inouye S, Herzer PJ, Inouye M (February 1990). "Two independent retrons with highly diverse reverse transcriptases in Myxococcus xanthus". Proc. Natl. Acad. Sci. U.S.A. 87 (3): 942–5. doi:10.1073/pnas.87.3.942. PMC 53385. PMID 1689062.
- ↑ Yee T, Furuichi T, Inouye S, Inouye M (August 1984). "Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus". Cell 38 (1): 203–9. doi:10.1016/0092-8674(84)90541-5.
- ↑ Furuichi T, Inouye S, Inouye M (January 1987). "Biosynthesis and structure of stable branched RNA covalently linked to the 5′ end of multicopy single-stranded DNA of Stigmatella aurantiaca". Cell 48 (1): 55–62. doi:10.1016/0092-8674(87)90355-2.
- ↑ 6.0 6.1 6.2 Das R, Shimamoto T, Hosen S, Arifuzzaman M (2011). "Comparative Study of different msDNA (multicopy single-stranded DNA) structures and phylogenetic comparison of reverse transcriptases (RTs): evidence for vertical inheritance". Bioinformation 7 (4): 176–9.
- ↑ Lampson BC, Sun J, Hsu MY, Vallejo-Ramirez J, Inouye S, Inouye M (February 1989). "Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA". Science 243 (4894 Pt 1): 1033–8. doi:10.1126/science.2466332. PMID 2466332.
- ↑ Lima TMO, Lim D (1995). "Isolation and Characterization of Host Mutants Defective in msDNA Synthesis: Role of Ribonuclease H in msDNA Synthesis". Plasmid 33 (3): 235–8. doi:10.1006/plas.1995.1026.
- ↑ Hsu MY, Inouye M, Inouye S (December 1990). "Retron for the 67-base multicopy single-stranded DNA from Escherichia coli: a potential transposable element encoding both reverse transcriptase and Dam methylase functions". Proc. Natl. Acad. Sci. U.S.A. 87 (23): 9454–8. doi:10.1073/pnas.87.23.9454. PMC 55184. PMID 1701261.
- ↑ Inouye S., Inouye M. (1993). "Bacterial Reverse Transcriptase". In Goff, Stephen and Anna M. Skalka. Reverse transcriptase. Cold Spring Harbor monograph series 23. Plainview, N.Y: Cold Spring Harbor Laboratory Press. ISBN 0-87969-382-7.
- ↑ 11.0 11.1 Das R, Shimamoto T, Arifuzzaman M (2011). "A Novel msDNA (Multicopy Single-Stranded DNA) Strain Present in Yersinia frederiksenii ATCC 33641 Contig01029 Enteropathogenic Bacteria with the Genomic Analysis of Its Retron". Journal of Pathogens 2011 (693769). doi:10.4061/2011/693769.
- ↑ Sherman LA, Chattopadhyay S (1993). "The Molecular Basis of Allorecognition". Annual Review of Immunology 11: 385–402. doi:10.1146/annurev.iy.11.040193.002125.
- ↑ Buss, Leo (2006). The Evolution of Individuality. Princeton University Press. ISBN 978-0-691-08469-5.
- ↑ Shimamoto T, Kawanishi H, Tsuchiya T, Inouye S, Inouye M (June 1998). "In Vitro Synthesis of Multicopy Single-Stranded DNA, Using Separate Primer and Template RNAs, by Escherichia coli Reverse Transcriptase". Journal of Bacteriology 180 (11): 2999–3002. PMC 107272. PMID 9603895.
- ↑ 15.0 15.1 Inouye S, Hsu MY, Xu A, Inouye M (1999). "Highly Specific Recognition of Primer RNA Structures for 2′-OH Priming Reaction by Bacterial Reverse Transcriptases". Journal of Biological Chemistry 274 (44): 31236–44. doi:10.1074/jbc.274.44.31236.
- ↑ Jacobo-Molina A, Ding J, Nanni RG, Clark Jr AD, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P (1993). "Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA". Proc. Nat. Acad. Sci. USA 90 (13): 6320–4.
- ↑ Sarafianos SG, Das K, Tantillo C, Clark Jr AD, Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E (2001). "Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA". The EMBO Journal 20 (6): 1449–61. doi:10.1093/emboj/20.6.1449. PMC 145536. PMID 11250910.
|