Multi-index notation

From Wikipedia, the free encyclopedia

The mathematical notation of multi-indices simplifies formulae used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

Multi-index notation

An n-dimensional multi-index is an n-tuple

\alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{n})

of non-negative integers (i.e. an element of the n-dimensional set of natural numbers, denoted {\mathbb  {N}}_{0}^{n}).

For multi-indices \alpha ,\beta \in {\mathbb  {N}}_{0}^{n} and x=(x_{1},x_{2},\ldots ,x_{n})\in {\mathbb  {R}}^{n} one defines:

Componentwise sum and difference
\alpha \pm \beta =(\alpha _{1}\pm \beta _{1},\,\alpha _{2}\pm \beta _{2},\ldots ,\,\alpha _{n}\pm \beta _{n})
Partial order
\alpha \leq \beta \quad \Leftrightarrow \quad \alpha _{i}\leq \beta _{i}\quad \forall \,i\in \{1,\ldots ,n\}
Sum of components (absolute value)
|\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}
Factorial
\alpha !=\alpha _{1}!\cdot \alpha _{2}!\cdots \alpha _{n}!
Binomial coefficient
{\binom  {\alpha }{\beta }}={\binom  {\alpha _{1}}{\beta _{1}}}{\binom  {\alpha _{2}}{\beta _{2}}}\cdots {\binom  {\alpha _{n}}{\beta _{n}}}={\frac  {\alpha !}{\beta !(\alpha -\beta )!}}
Multinomial coefficient
{\binom  {k}{\alpha }}={\frac  {k!}{\alpha _{1}!\alpha _{2}!\cdots \alpha _{n}!}}={\frac  {k!}{\alpha !}}

where k:=|\alpha |\in {\mathbb  {N}}_{0}\,\!.

Power
x^{\alpha }=x_{1}^{{\alpha _{1}}}x_{2}^{{\alpha _{2}}}\ldots x_{n}^{{\alpha _{n}}}.
Higher-order partial derivative
\partial ^{\alpha }=\partial _{1}^{{\alpha _{1}}}\partial _{2}^{{\alpha _{2}}}\ldots \partial _{n}^{{\alpha _{n}}}

where \partial _{i}^{{\alpha _{i}}}:=\partial ^{{\alpha _{i}}}/\partial x_{i}^{{\alpha _{i}}} (see also 4-gradient).

Some applications

The multi-index notation allows the extension of many formulae from elementary calculus to the corresponding multi-variable case. Below are some examples. In all the following, x,y,h\in {\mathbb  {C}}^{n} (or {\mathbb  {R}}^{n}), \alpha ,\nu \in {\mathbb  {N}}_{0}^{n}, and f,a_{\alpha }\colon {\mathbb  {C}}^{n}\to {\mathbb  {C}} (or {\mathbb  {R}}^{n}\to {\mathbb  {R}}).

Multinomial theorem
{\biggl (}\sum _{{i=1}}^{n}x_{i}{\biggr )}^{k}=\sum _{{|\alpha |=k}}{\binom  {k}{\alpha }}\,x^{\alpha }
Multi-binomial theorem
(x+y)^{\alpha }=\sum _{{\nu \leq \alpha }}{\binom  {\alpha }{\nu }}\,x^{\nu }y^{{\alpha -\nu }}.

Note that, since x+y is a vector and α is a multi-index, the expression on the left is short for (x1+y1)α1...(xn+yn)αn.

Leibniz formula

For smooth functions f and g

\partial ^{\alpha }(fg)=\sum _{{\nu \leq \alpha }}{\binom  {\alpha }{\nu }}\,\partial ^{{\nu }}f\,\partial ^{{\alpha -\nu }}g.
Taylor series

For an analytic function f in n variables one has

f(x+h)=\sum _{{\alpha \in {\mathbb  {N}}_{0}^{n}}}^{{}}{{\frac  {\partial ^{{\alpha }}f(x)}{\alpha !}}h^{\alpha }}.

In fact, for a smooth enough function, we have the similar Taylor expansion

f(x+h)=\sum _{{|\alpha |\leq n}}{{\frac  {\partial ^{{\alpha }}f(x)}{\alpha !}}h^{\alpha }}+R_{{n}}(x,h),

where the last term (the remainder) depends on the exact version of Taylor's formula. For instance, for the Cauchy formula (with integral remainder), one gets

R_{n}(x,h)=(n+1)\sum _{{|\alpha |=n+1}}{\frac  {h^{\alpha }}{\alpha !}}\int _{0}^{1}(1-t)^{n}\partial ^{\alpha }f(x+th)\,dt.
General partial differential operator

A formal N-th order partial differential operator in n variables is written as

P(\partial )=\sum _{{|\alpha |\leq N}}{}{a_{{\alpha }}(x)\partial ^{{\alpha }}}.
Integration by parts

For smooth functions with compact support in a bounded domain \Omega \subset {\mathbb  {R}}^{n} one has

\int _{{\Omega }}{}{u(\partial ^{{\alpha }}v)}\,dx=(-1)^{{|\alpha |}}\int _{{\Omega }}^{{}}{(\partial ^{{\alpha }}u)v\,dx}.

This formula is used for the definition of distributions and weak derivatives.

An example theorem

If \alpha ,\beta \in {\mathbb  {N}}_{0}^{n} are multi-indices and x=(x_{1},\ldots ,x_{n}), then

\partial ^{\alpha }x^{\beta }={\begin{cases}{\frac  {\beta !}{(\beta -\alpha )!}}x^{{\beta -\alpha }}&{\hbox{if}}\,\,\alpha \leq \beta ,\\0&{\hbox{otherwise.}}\end{cases}}

Proof

The proof follows from the power rule for the ordinary derivative; if α and β are in {0, 1, 2, . . .}, then

{\frac  {d^{\alpha }}{dx^{\alpha }}}x^{\beta }={\begin{cases}{\frac  {\beta !}{(\beta -\alpha )!}}x^{{\beta -\alpha }}&{\hbox{if}}\,\,\alpha \leq \beta ,\\0&{\hbox{otherwise.}}\end{cases}}\qquad (1)

Suppose \alpha =(\alpha _{1},\ldots ,\alpha _{n}), \beta =(\beta _{1},\ldots ,\beta _{n}), and x=(x_{1},\ldots ,x_{n}). Then we have that

{\begin{aligned}\partial ^{\alpha }x^{\beta }&={\frac  {\partial ^{{\vert \alpha \vert }}}{\partial x_{1}^{{\alpha _{1}}}\cdots \partial x_{n}^{{\alpha _{n}}}}}x_{1}^{{\beta _{1}}}\cdots x_{n}^{{\beta _{n}}}\\&={\frac  {\partial ^{{\alpha _{1}}}}{\partial x_{1}^{{\alpha _{1}}}}}x_{1}^{{\beta _{1}}}\cdots {\frac  {\partial ^{{\alpha _{n}}}}{\partial x_{n}^{{\alpha _{n}}}}}x_{n}^{{\beta _{n}}}.\end{aligned}}

For each i in {1, . . ., n}, the function x_{i}^{{\beta _{i}}} only depends on x_{i}. In the above, each partial differentiation \partial /\partial x_{i} therefore reduces to the corresponding ordinary differentiation d/dx_{i}. Hence, from equation (1), it follows that \partial ^{\alpha }x^{\beta } vanishes if αi > βi for at least one i in {1, . . ., n}. If this is not the case, i.e., if α  β as multi-indices, then

{\frac  {d^{{\alpha _{i}}}}{dx_{i}^{{\alpha _{i}}}}}x_{i}^{{\beta _{i}}}={\frac  {\beta _{i}!}{(\beta _{i}-\alpha _{i})!}}x_{i}^{{\beta _{i}-\alpha _{i}}}

for each i and the theorem follows. \Box

See also

References

  • Saint Raymond, Xavier (1991). Elementary Introduction to the Theory of Pseudodifferential Operators. Chap 1.1 . CRC Press. ISBN 0-8493-7158-9

This article incorporates material from multi-index derivative of a power on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.