Molecular symmetry

From Wikipedia, the free encyclopedia

Molecular symmetry in chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can predict or explain many of a molecule's chemical properties, such as its dipole moment and its allowed spectroscopic transitions (based on selection rules such as the Laporte rule). Many university level textbooks on physical chemistry, quantum chemistry, and inorganic chemistry devote a chapter to symmetry.[1][2][3][4][5]

While various frameworks for the study of molecular symmetry exist, group theory is the predominant one. This framework is also useful in studying the symmetry of molecular orbitals, with applications such as the Hückel method, ligand field theory, and the Woodward-Hoffmann rules. Another framework on a larger scale is the use of crystal systems to describe crystallographic symmetry in bulk materials.

Many techniques for the practical assessment of molecular symmetry exist, including X-ray crystallography and various forms of spectroscopy, for example infrared spectroscopy of metal carbonyls. Spectroscopic notation is based on symmetry considerations.

Symmetry concepts

The study of symmetry in molecules is an adaptation of mathematical group theory.

Elements

The symmetry of a molecule can be described by 5 types of symmetry elements.

  • Symmetry axis: an axis around which a rotation by {\tfrac  {360^{\circ }}{n}} results in a molecule indistinguishable from the original. This is also called an n-fold rotational axis and abbreviated Cn. Examples are the C2 in water and the C3 in ammonia. A molecule can have more than one symmetry axis; the one with the highest n is called the principal axis, and by convention is assigned the z-axis in a Cartesian coordinate system.
  • Plane of symmetry: a plane of reflection through which an identical copy of the original molecule is given. This is also called a mirror plane and abbreviated σ. Water has two of them: one in the plane of the molecule itself and one perpendicular to it. A symmetry plane parallel with the principal axis is dubbed verticalv) and one perpendicular to it horizontalh). A third type of symmetry plane exists: If a vertical symmetry plane additionally bisects the angle between two 2-fold rotation axes perpendicular to the principal axis, the plane is dubbed dihedrald). A symmetry plane can also be identified by its Cartesian orientation, e.g., (xz) or (yz).
  • Center of symmetry or inversion center, abbreviated i. A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it. There may or may not be an atom at the center. Examples are xenon tetrafluoride where the inversion center is at the Xe atom, and benzene (C6H6) where the inversion center is at the center of the ring.
  • Rotation-reflection axis: an axis around which a rotation by {\tfrac  {360^{\circ }}{n}}, followed by a reflection in a plane perpendicular to it, leaves the molecule unchanged. Also called an n-fold improper rotation axis, it is abbreviated Sn. Examples are present in tetrahedral silicon tetrafluoride, with three S4 axes, and the staggered conformation of ethane with one S6 axis.
  • Identity, abbreviated to E, from the German 'Einheit' meaning unity.[6] This symmetry element simply consists of no change: every molecule has this element. While this element seems physically trivial, its consideration is necessary for the group-theoretical machinery to work properly. It is so called because it is analogous to multiplying by one (unity).

Operations

The 5 symmetry elements have associated with them 5 types of symmetry operations. They are often, although not always, distinguished from the respective elements by a caret. Thus, Ĉn is the rotation of a molecule around an axis and Ê is the identity operation. A symmetry element can have more than one symmetry operation associated with it. Since C1 is equivalent to E, S1 to σ and S2 to i, all symmetry operations can be classified as either proper or improper rotations.

Binary Operations

          A binary operation is a mapping that maps from pairs of elements of a set to single elements of the same set. Usual addition and multiplication of numbers are binary operations on the sets of integers, rational numbers and of real numbers.

Groups

          A group is a mathematical structure (usually denoted in the form (G,*)) consisting of a set G and a binary operation say '*' satisfying the following properties:
(1) closure property:
          For every pair of elements x and y in G, the product x*y is also in G.
          ( in symbols, for every two elements x, yG, x*y is also in G )
(2) associative property:
          For every x and y and z in G, both (x*y)*z and x*(y*z) result with the same element in G.
          ( in symbols, (x*y)*z = x*(y*z ) for every x, y, and zG)
(3) existence of identity property:
          There must be an element ( say e ) in G such that product any element of G with e make no change to the element.
          ( in symbols, x*e=e*x= x for every xG )
(4) existence of inverse property:
          For each element ( x ) in G, there must be an element y in G such that product of x and y is the identity element e.
          ( in symbols, for each xG there is a yG such that x*y=y*x= e for every xG )

Remark

          The Order of a group is the number of elements in the group.
         In case of groups of small orders, verification of the properties can be easily carried out by considering its composition table, a table whose rows and columns corresponds elements of the group and elements corresponds to respective products.

Point group

The successive application (or composition) of one or more symmetry operations of a molecule has an effect equivalent to that of some single symmetry operation of the molecule. Moreover the set of all symmetry operations including this composition operation obeys all the properties of a group, given above. So (S,*) is a group where S is the set of all symmetry operations of some molecule, and * denotes the composition (repeated application) of symmetry operations. This group is called the 'point group of that molecule.

The symmetry of a crystal is described by a space group of symmetry operations rather than a point group.

Examples

    (1)   The point group for the water molecule is C2v, consisting of the symmetry operations E, C2, σv and σv'. Its order is thus 4. Each operation is its own inverse. As an example of closure, a C2 rotation followed by a σv reflection is seen to be a σv' symmetry operation: σv*C2 = σv'. (Note that "Operation A followed by B to form C" is written BA = C).
    (2)   Another example is the ammonia molecule, which is pyramidal and contains a three-fold rotation axis as well as three mirror planes at an angle of 120° to each other. Each mirror plane contains an N-H bond and bisects the H-N-H bond angle opposite to that bond. Thus ammonia molecule belongs to the C3v point group that has order 6: an identity element E, two rotation operations C3 and C32, and three mirror reflections σv, σv' and σv".

Common point groups

The following table contains a list of point groups with representative molecules. The description of structure includes common shapes of molecules based on VSEPR theory.

Point group Symmetry operations Simple description of typical geometry Example 1 Example 2 Example 3
C1 E no symmetry, chiral
bromochlorofluoromethane

lysergic acid
Cs E σh mirror plane, no other symmetry
thionyl chloride

hypochlorous acid

chloroiodomethane
Ci E i inversion center (R,R) 1,2-dichloro-1,2-dibromoethane (anti conformer)
C∞v E 2C ∞σv linear
Hydrogen fluoride

dicarbon monoxide
D∞h E 2C ∞σi i 2S ∞C2 linear with inversion center
oxygen

carbon dioxide
C2 E C2 "open book geometry," chiral
hydrogen peroxide
C3 E C3 propeller, chiral
triphenylphosphine
C2h E C2 i σh planar with inversion center
trans-1,2-dichloroethylene
C3h E C3 C32 σh S3 S35 propeller
boric acid
C2v E C2 σv(xz) σv'(yz) angular (H2O) or see-saw (SF4)
water

sulfur tetrafluoride

sulfuryl fluoride
C3v E 2C3v trigonal pyramidal
ammonia

phosphorus oxychloride
C4v E 2C4 C2vd square pyramidal
xenon oxytetrafluoride
D2 E C2(x) C2(y) C2(z) twist, chiral cyclohexane twist conformation
D3 E C3(z) 3C2 triple helix, chiral
Tris(ethylenediamine)cobalt(III) cation
D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz) planar with inversion center
ethylene

dinitrogen tetroxide

diborane
D3h E 2C3 3C2 σh 2S3v trigonal planar or trigonal bipyramidal
boron trifluoride

phosphorus pentachloride
D4h E 2C4 C2 2C2' 2C2 i 2S4 σhvd square planar
xenon tetrafluoride

octachlorodimolybdate(III) anion
D5h E 2C5 2C52 5C2 σh 2S5 2S53v pentagonal
ruthenocene

C70
D6h E 2C6 2C3 C2 3C2' 3C2‘’ i 2S3 2S6 σhdv hexagonal
benzene

bis(benzene)chromium
D2d E 2S4 C2 2C2' 2σd 90° twist
allene

tetrasulfur tetranitride
D3d E C3 3C2 i 2S6d 60° twist
ethane (staggered rotamer)

cyclohexane chair conformation
D4d E 2S8 2C4 2S83 C2 4C2' 4σd 45° twist
dimanganese decacarbonyl (staggered rotamer)
D5d E 2C5 2C52 5C2 i 3S103 2S10d 36° twist
ferrocene (staggered rotamer)
Td E 8C3 3C2 6S4d tetrahedral
methane

phosphorus pentoxide

adamantane
Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6hd octahedral or cubic
cubane

sulfur hexafluoride
Ih E 12C5 12C52 20C3 15C2 i 12S10 12S103 20S6 15σ icosahedral or dodecahedral
Buckminsterfullerene

dodecaborate anion

dodecahedrane

Representations

The symmetry operations can be represented in many ways. A convenient representation is by matrices. For any vector representing a point in Cartesian coordinates, left-multiplying it gives the new location of the point transformed by the symmetry operation. Composition of operations corresponds to matrix multiplication. In the C2v example this is:

\underbrace {{\begin{bmatrix}-1&0&0\\0&-1&0\\0&0&1\\\end{bmatrix}}}_{{C_{{2}}}}\times \underbrace {{\begin{bmatrix}1&0&0\\0&-1&0\\0&0&1\\\end{bmatrix}}}_{{\sigma _{{v}}}}=\underbrace {{\begin{bmatrix}-1&0&0\\0&1&0\\0&0&1\\\end{bmatrix}}}_{{\sigma '_{{v}}}}

Although an infinite number of such representations exist, the irreducible representations (or "irreps") of the group are commonly used, as all other representations of the group can be described as a linear combination of the irreducible representations.

Character tables

For each point group, a character table summarizes information on its symmetry operations and on its irreducible representations. As there are always equal numbers of irreducible representations and classes of symmetry operations, the tables are square.

The table itself consists of characters that represent how a particular irreducible representation transforms when a particular symmetry operation is applied. Any symmetry operation in a molecule's point group acting on the molecule itself will leave it unchanged. But, for acting on a general entity, such as a vector or an orbital, this need not be the case. The vector could change sign or direction, and the orbital could change type. For simple point groups, the values are either 1 or 1: 1 means that the sign or phase (of the vector or orbital) is unchanged by the symmetry operation (symmetric) and 1 denotes a sign change (asymmetric).

The representations are labeled according to a set of conventions:

  • A, when rotation around the principal axis is symmetrical
  • B, when rotation around the principal axis is asymmetrical
  • E and T are doubly and triply degenerate representations, respectively
  • when the point group has an inversion center, the subscript g (German: gerade or even) signals no change in sign, and the subscript u (ungerade or uneven) a change in sign, with respect to inversion.
  • with point groups C∞v and D∞h the symbols are borrowed from angular momentum description: Σ, Π, Δ.

The tables also capture information about how the Cartesian basis vectors, rotations about them, and quadratic functions of them transform by the symmetry operations of the group, by noting which irreducible representation transforms in the same way. These indications are conventionally on the righthand side of the tables. This information is useful because chemically important orbitals (in particular p and d orbitals) have the same symmetries as these entities.

The character table for the C2v symmetry point group is given below:

C2v E C2 σv(xz) σv'(yz)
A1 1 1 1 1 z x2, y2, z2
A2 1 1 1 1 Rz xy
B1 1 1 1 1 x, Ry xz
B2 1 1 1 1 y, Rx yz

Consider the example of water (H2O), which has the C2v symmetry described above. The 2px orbital of oxygen is oriented perpendicular to the plane of the molecule and switches sign with a C2 and a σv'(yz) operation, but remains unchanged with the other two operations (obviously, the character for the identity operation is always +1). This orbital's character set is thus {1, 1, 1, 1}, corresponding to the B1 irreducible representation. Likewise, the 2pz orbital is seen to have the symmetry of the A1 irreducible representation, 2py B2, and the 3dxy orbital A2. These assignments and others are noted in the rightmost two columns of the table.

Historical background

Hans Bethe used characters of point group operations in his study of ligand field theory in 1929, and Eugene Wigner used group theory to explain the selection rules of atomic spectroscopy.[7] The first character tables were compiled by László Tisza (1933), in connection to vibrational spectra. Robert Mulliken was the first to publish character tables in English (1933), and E. Bright Wilson used them in 1934 to predict the symmetry of vibrational normal modes.[8] The complete set of 32 crystallographic point groups was published in 1936 by Rosenthal and Murphy.[9]

See also

References

  1. Quantum Chemistry, Third Edition John P. Lowe, Kirk Peterson ISBN 0-12-457551-X
  2. Physical Chemistry: A Molecular Approach by Donald A. McQuarrie, John D. Simon ISBN 0-935702-99-7
  3. The chemical bond 2nd Ed. J.N. Murrell, S.F.A. Kettle, J.M. Tedder ISBN 0-471-90760-X
  4. Physical Chemistry P. W. Atkins ISBN 0-7167-2871-0
  5. G. L. Miessler and D. A. Tarr “Inorganic Chemistry” 3rd Ed, Pearson/Prentice Hall publisher, ISBN 0-13-035471-6.
  6. LEO Ergebnisse für "einheit"
  7. Group Theory and its application to the quantum mechanics of atomic spectra, E. P. Wigner, Academic Press Inc. (1959)
  8. Correcting Two Long-Standing Errors in Point Group Symmetry Character Tables Randall B. Shirts J. Chem. Educ. 2007, 84, 1882. Abstract
  9. Group Theory and the Vibrations of Polyatomic Molecules Jenny E. Rosenthal and G. M. Murphy Rev. Mod. Phys. 8, 317 - 346 (1936) doi:10.1103/RevModPhys.8.317

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.