Mobile DDR
Mobile DDR (also known as mDDR, Low Power DDR, or LPDDR) is type of double data rate synchronous DRAM for mobile computers.
Original LPDDR
The original low-power DDR (sometimes, in hindsight, called LPDDR1) is a slightly modified form of DDR SDRAM, with several changes to reduce overall power consumption.
Most significant, the supply voltage is reduced from 2.5 to 1.8 V. Additional savings come from temperature-compensated refresh (DRAM requires refresh less often at low temperatures), partial array self refresh, and a "deep power down" mode which sacrifices all memory contents. Additionally, chips are smaller, using less board space than their non-mobile equivalents. Samsung and Micron are two of the main providers of this technology, which is used in tablet computing devices such as the Apple iPad, Samsung Galaxy Tab and Motorola Droid X.[1]
LPDDR2
A new JEDEC standard JESD209-2E defines a more dramatically revised low-power DDR interface. It is not compatible with either DDR1 or DDR2 SDRAM, but can accommodate either:
- LPDDR2-S2: 2n prefetch memory (like DDR1),
- LPDDR2-S4: 4n prefetch memory (like DDR2), or
- LPDDR2-N: Non-volatile (NAND flash) memory.
Low-power states are similar to basic LPDDR, with some additional partial array refresh options.
Timing parameters are specified for LPDDR-200 to LPDDR-1066 (clock frequencies of 100 to 533 MHz).
Working at 1.2 V, LPDDR2 multiplexes the control and address lines onto a 10-bit double data rate CA bus. The commands are similar to those of normal SDRAM, except for the reassignment of the precharge and burst terminate opcodes:
CK | CA0 (RAS) | CA1 (CAS) | CA2 (WE) | CA3 | CA4 | CA5 | CA6 | CA7 | CA8 | CA9 | Operation |
---|---|---|---|---|---|---|---|---|---|---|---|
↑ | H | H | H | — | NOP | ||||||
↓ | — | ||||||||||
↑ | H | H | L | H | H | — | Precharge all banks | ||||
↓ | — | ||||||||||
↑ | H | H | L | H | L | — | BA2 | BA1 | BA0 | Precharge one bank | |
↓ | — | ||||||||||
↑ | H | H | L | H | A30 | A31 | A32 | BA2 | BA1 | BA0 | Preactive (LPDDR2-N only) |
↓ | A20 | A21 | A22 | A23 | A24 | A25 | A26 | A27 | A28 | A29 | |
↑ | H | H | L | L | — | Burst terminate | |||||
↓ | — | ||||||||||
↑ | H | L | H | reserved | C1 | C2 | BA2 | BA1 | BA0 | Read (AP=auto-precharge) | |
↓ | AP | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | |
↑ | H | L | L | reserved | C1 | C2 | BA2 | BA1 | BA0 | Write (AP=auto-precharge) | |
↓ | AP | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | |
↑ | L | H | R8 | R9 | R10 | R11 | R12 | BA2 | BA1 | BA0 | Activate (R0–14=Row address) |
↓ | R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R13 | R14 | |
↑ | L | H | A15 | A16 | A17 | A18 | A19 | BA2 | BA1 | BA0 | Activate (LPDDR2-N only) |
↓ | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | |
↑ | L | L | H | H | — | Refresh all banks (LPDDR2-Sx only) | |||||
↓ | — | ||||||||||
↑ | L | L | H | L | — | Refresh one bank (Round-robin addressing) | |||||
↓ | — | ||||||||||
↑ | L | L | L | H | MA0 | MA1 | MA2 | MA3 | MA4 | MA5 | Mode register read (MA0–7=Address) |
↓ | MA6 | MA7 | — | ||||||||
↑ | L | L | L | L | MA0 | MA1 | MA2 | MA3 | MA4 | MA5 | Mode register write (OP0–7=Data) |
↓ | MA6 | MA7 | OP0 | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | OP7 |
Column address bit C0 is never transferred, and is assumed to be zero. Burst transfers thus always begin at even addresses.
LPDDR2 also has an active-low chip select (when high, everything is a NOP) and clock enable CKE signal, which operate like SDRAM. Also like SDRAM, the command sent on the cycle that CKE is first dropped selects the power-down state:
- If the chip is active, it freezes in place.
- If the command is a NOP (CS low or CA0–2 = HHH), the chip idles.
- If the command is a refresh command (CA0–2 = LLH), the chip enters the self-refresh state.
- If the command is a burst terminate (CA0–2 = HHL), the chip enters the deep power-down state. (A full reset sequence is required when leaving.)
The mode registers have been greatly expanded compared to conventional SDRAM, with an 8-bit address space, and the ability to read them back. Although smaller than a serial presence detect EEPROM, enough information is included to obviate the need for one.
S2 devices smaller than 4 Gbit, and S4 devices smaller than 1 Gbit have only 4 banks. They ignore the BA2 signal, and do not support per-bank refresh.
Non-volatile memory devices do not use the refresh commands, and reassign the precharge command to transfer address bits A20 and up. The low-order bits (A19 and down) are transferred by a following Activate command. This transfers the selected row from the memory array to one of 4 or 8 (selected by the BA bits) row data buffers, where they can be read by a Read command. Unlike DRAM, the bank address bits are not part of the memory address; any address can be transferred to any row data buffer. A row data buffer may be from 32 to 4096 bytes long, depending on the type of memory. Rows larger than 32 bytes ignore some of the low-order address bits in the Activate command. Rows smaller than 4096 bytes ignore some of the high-order address bits in the Read command.
Non-volatile memory does not support the Write command to row data buffers. Rather, a series of control registers in a special address region support Read and Write commands, which can be used to erase and program the memory array.
LPDDR3
In May 2012, JEDEC published the JESD209-3 Low Power Memory Device Standard.[3][4][5] In comparison to LPDDR2, LPDDR3 offers a higher data rate, greater bandwidth and power efficiency, and higher memory density. LPDDR3 achieves a data rate of 1600 MT/s and utilizes key new technologies: write-leveling and command/address training,[6] optional on-die termination (ODT), and low-I/O capacitance. LPDDR3 supports both package-on-package (PoP) and discrete packaging types.
The command encoding is identical to LPDDR2, using a 10-bit double data rate CA bus.[4] However, the standard only specifes 8n-prefetch DRAM, and does not include the flash memory commands.
Products using LPDDR3 include the 2013 Macbook Air, iPhone 5S, Nexus 10 and Samsung Galaxy S4(GT-I9500).[7] LPDDR3 went mainstream in 2013, running at 800 MHz DDR (1600 MT/s), offering bandwidth comparable to PC3-12800 notebook memory in 2011 (12.8 GB/s of bandwidth).[8] However, even though it offers the same memory bandwidth as notebook memory from 2011. To achieve this bandwidth, the controller must implement dual-channel memory. For example, this is the case for the Exynos 5 Dual[9] and the 5 Octa[10]
Samsung Electronics introduced the first 4 Gigabit 20 nm-class LPDDR3 modules capable of transmitting data at up to 2,133 Mbit/s per pin, more than double the performance of the older LPDDR2 which is only capable of 800 Mbit/s.[11] Various SoCs from various manufacturers also natively support 800 MHz LPDDR3 RAM. Such include the Snapdragon 600 and 800 from Qualcomm[12] as well as some SoCs from the Exynos and Allwinner series.
LPDDR4
On March 14, 2012, JEDEC hosted a conference to explore how future mobile device requirements will drive upcoming standards like LPDDR4.[13] On December 30, 2013, Samsung announced that it has developed the first 20 nm-class 8 Gigabit (1GB) LPDDR4 capable of transmitting data at 3,200 Mbit/s, thus providing 50 percent higher performance than the fastest LPDDR3 and consuming around 40 percent less energy at 1.1 volts.[14]
References
- ↑ Anandtech Samsung Galaxy Tab - The AnandTech Review, December 23, 2010
- ↑ JEDEC Standard: Low Power Double Data Rate 2 (LPDDR2), JEDEC Solid State Technology Association, February 2010, retrieved 2010-12-30
- ↑ JEDEC publishes LPDDR3 standard for low-power memory chips, Solid State Technology magazine
- ↑ 4.0 4.1 JESD209-3 LPDDR3 Low Power Memory Device Standard, JEDEC Solid State Technology Association
- ↑ JEDEC Announces Publication of LPDDR3 Standard for Low Power Memory Devices
- ↑ Want a quick and dirty overview of the new JEDEC LPDDR3 spec? EETimes serves it up, Denali Memory Report
- ↑ Inside the Samsung Galaxy S4, Chipworks
- ↑ Samsung LPDDR3 High-Performance Memory Enables Amazing Mobile Devices in 2013, 2014 - Bright Side of News
- ↑ Samsung Exynos 5 Dual
- ↑ Samsung reveals eight-core mobile processor on EEtimes
- ↑ Now Producing Four Gigabit LPDDR3 Mobile DRAM, Using 20nm-class* Process Technology, Businesswire
- ↑ Snapdragon 800 Series and 600 Processors Unveiled , Qualcomm
- ↑ JEDEC Conference to Highlight Mobile Technology
- ↑ Samsung Develops Industry’s First 8Gb LPDDR4 Mobile DRAM
External links
- Micron
- Elpida
- Nanya
- Samsung
- JEDEC pages: LOW POWER DOUBLE DATA RATE 3 SDRAM (LPDDR3)
|